Limits...
Glycomic profiling of carcinoembryonic antigen isolated from human tumor tissue.

Huang C, Zhan T, Liu Y, Li Q, Wu H, Ji D, Li Y - Clin Proteomics (2015)

Bottom Line: However, little is known about the detailed glycan patterns of CEA.The glycan patterns of CEA were then analyzed using a Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry(3) (MALDI-TOF-MS(3)) approach.These glycosylation entities were identified as bi-antennary, tri-antennary and tetra-antennary structures carrying sialic acid and fucose residues, and include a multitude of glycans previously not reported for CEA.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China.

ABSTRACT

Background: Carcinoembryonic antigen (CEA) is a protein commonly found in human serum, with elevated CEA levels being linked to the progression of a wide range of tumors. It is currently used as a biomarker for malign tumors such as lung cancer and colorectal cancer [Urol Oncol: Semin Orig Invest 352: 644-648, 2013 and Lung Cancer 80: 45-49, 2013]. However, due to its low specificity in clinical applications, CEA can be used for monitoring only, rather than tumor diagnosis. The function of many glycoproteins is critically dependent on their glycosylation pattern, which in turn has the potential to serve in tumor detection. However, little is known about the detailed glycan patterns of CEA.

Methods: To determine these patterns, we isolated and purified CEA proteins from human tumor tissues using immunoaffinity chromatography. The glycan patterns of CEA were then analyzed using a Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry(3) (MALDI-TOF-MS(3)) approach.

Results: We identified 61 glycoforms in tumor tissue, where CEA is upregulated. These glycosylation entities were identified as bi-antennary, tri-antennary and tetra-antennary structures carrying sialic acid and fucose residues, and include a multitude of glycans previously not reported for CEA.

Conclusion: Our findings should facilitate a more precise tumor prediction than currently possible, ultimately resulting in improved tumor diagnosis and treatment.

No MeSH data available.


Related in: MedlinePlus

Calibration curve of standard CEA using ELISA
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4495800&req=5

Fig2: Calibration curve of standard CEA using ELISA

Mentions: In order to analyze the glycan moieties of CEA, we first isolated and purified CEA protein by immunoadsorption from human tumor tissues. CEA antibodies were first covalently coupled to Sepharose beads, to then allow target CEA to be precipitated, before it was eluted from the cartridge (Fig. 1a). Non-specific binding, resulting in low signal-to-noise-ratio, was avoided through covalent coupling of CEA antibodies. The concentration of eluted CEA was determined using an ELISA method. Using a standard curve (Fig. 2), we estimated that our procedure yielded approximate 12 ng CEA glycoproteins per 400 mg of colorectal carcinoma tissue used.Fig. 2


Glycomic profiling of carcinoembryonic antigen isolated from human tumor tissue.

Huang C, Zhan T, Liu Y, Li Q, Wu H, Ji D, Li Y - Clin Proteomics (2015)

Calibration curve of standard CEA using ELISA
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4495800&req=5

Fig2: Calibration curve of standard CEA using ELISA
Mentions: In order to analyze the glycan moieties of CEA, we first isolated and purified CEA protein by immunoadsorption from human tumor tissues. CEA antibodies were first covalently coupled to Sepharose beads, to then allow target CEA to be precipitated, before it was eluted from the cartridge (Fig. 1a). Non-specific binding, resulting in low signal-to-noise-ratio, was avoided through covalent coupling of CEA antibodies. The concentration of eluted CEA was determined using an ELISA method. Using a standard curve (Fig. 2), we estimated that our procedure yielded approximate 12 ng CEA glycoproteins per 400 mg of colorectal carcinoma tissue used.Fig. 2

Bottom Line: However, little is known about the detailed glycan patterns of CEA.The glycan patterns of CEA were then analyzed using a Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry(3) (MALDI-TOF-MS(3)) approach.These glycosylation entities were identified as bi-antennary, tri-antennary and tetra-antennary structures carrying sialic acid and fucose residues, and include a multitude of glycans previously not reported for CEA.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China.

ABSTRACT

Background: Carcinoembryonic antigen (CEA) is a protein commonly found in human serum, with elevated CEA levels being linked to the progression of a wide range of tumors. It is currently used as a biomarker for malign tumors such as lung cancer and colorectal cancer [Urol Oncol: Semin Orig Invest 352: 644-648, 2013 and Lung Cancer 80: 45-49, 2013]. However, due to its low specificity in clinical applications, CEA can be used for monitoring only, rather than tumor diagnosis. The function of many glycoproteins is critically dependent on their glycosylation pattern, which in turn has the potential to serve in tumor detection. However, little is known about the detailed glycan patterns of CEA.

Methods: To determine these patterns, we isolated and purified CEA proteins from human tumor tissues using immunoaffinity chromatography. The glycan patterns of CEA were then analyzed using a Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry(3) (MALDI-TOF-MS(3)) approach.

Results: We identified 61 glycoforms in tumor tissue, where CEA is upregulated. These glycosylation entities were identified as bi-antennary, tri-antennary and tetra-antennary structures carrying sialic acid and fucose residues, and include a multitude of glycans previously not reported for CEA.

Conclusion: Our findings should facilitate a more precise tumor prediction than currently possible, ultimately resulting in improved tumor diagnosis and treatment.

No MeSH data available.


Related in: MedlinePlus