Limits...
Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China.

Li C, Ning C, Hagelberg E, Li H, Zhao Y, Li W, Abuduresule I, Zhu H, Zhou H - BMC Genet. (2015)

Bottom Line: Xiaohe people carried a wide variety of maternal lineages, including West Eurasian lineages H, K, U5, U7, U2e, T, R*, East Eurasian lineages B, C4, C5, D, G2a and Indian lineage M5.Our results indicate that the people of the Tarim Basin had a diverse maternal ancestry, with origins in Europe, central/eastern Siberia and southern/western Asia.These findings, together with information on the cultural context of the Xiaohe cemetery, can be used to test contrasting hypotheses of route of settlement into the Tarim Basin.

View Article: PubMed Central - PubMed

Affiliation: College of Life Science, Jilin University, Changchun, 130023, P. R. China. chunxiangli@jlu.edu.cn.

ABSTRACT

Background: The Tarim Basin in western China, known for its amazingly well-preserved mummies, has been for thousands of years an important crossroad between the eastern and western parts of Eurasia. Despite its key position in communications and migration, and highly diverse peoples, languages and cultures, its prehistory is poorly understood. To shed light on the origin of the populations of the Tarim Basin, we analysed mitochondrial DNA polymorphisms in human skeletal remains excavated from the Xiaohe cemetery, used by the local community between 4000 and 3500 years before present, and possibly representing some of the earliest settlers.

Results: Xiaohe people carried a wide variety of maternal lineages, including West Eurasian lineages H, K, U5, U7, U2e, T, R*, East Eurasian lineages B, C4, C5, D, G2a and Indian lineage M5.

Conclusion: Our results indicate that the people of the Tarim Basin had a diverse maternal ancestry, with origins in Europe, central/eastern Siberia and southern/western Asia. These findings, together with information on the cultural context of the Xiaohe cemetery, can be used to test contrasting hypotheses of route of settlement into the Tarim Basin.

No MeSH data available.


Median joining networks for mtDNA haplogroups K, C, D and G2a, based on HVS-I sequences between region np16050-16391. Circle areas are proportional to haplotype frequency. The length of the lines between nodes is proportional to the mutation steps. The diagnostic mutations used to classify the major branches are labeled on the line. The Number sign(#) and the following panels indicate the assumed root of each haplogroup
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4495690&req=5

Fig3: Median joining networks for mtDNA haplogroups K, C, D and G2a, based on HVS-I sequences between region np16050-16391. Circle areas are proportional to haplotype frequency. The length of the lines between nodes is proportional to the mutation steps. The diagnostic mutations used to classify the major branches are labeled on the line. The Number sign(#) and the following panels indicate the assumed root of each haplogroup

Mentions: The west Eurasian haplogroups of the Xiaohe people were more diverse (Hd = 0.9722 versus Hd = 0.8585), but less abundant (9 individuals versus 26 individuals) than the East Eurasian haplogroups. The predominant lineage was UK, of which four different subhaplogroups were observed: one K, two U7, two U5a, and one U2e. One individual with Hg T and one individual with Hg H were detected. The latter carried the HVRI Cambridge Reference Sequence (CRS), very common in living Europeans [31, 33, 34]. This sequence has also been observed in ancient human remains of Neolithic Europe [35, 36], the Bronze Age in central Asia [37], as well as the Mongolian Altai Mountains [38], and the Iron Age in southern Siberia [39]. The T haplotype observed in Xiaohe is found exclusively in Europeans, with the exception of Iran in modern people, and found mostly as T2. It has also been observed in human remains of Neolithic Europe [36], the Eneolithic/Bronze Age in the Pontic Caspian steppe [40], and the Bronze Age in Kazakhstan [37]. No exact match was found for the Xiaohe K haplotype in our database. The network shows that it clusters into one subclade with the 16093 mutation, which is mainly distributed in Europe and Iran (Fig. 3a). Therefore, the K haplotype sequenced in Xiaohe is currently uninformative about population affinity. There are two U5a haplotypes observed in Xiaohe, the basal U5a*(16192 T-16256 T-16270 T) was found broadly in Europe and central Asia, while the derived U5a haplotype(16192 T-16256 T-16270 T-291 T) was found exclusively in Europe for modern people. These two sequences have also been found in Neolithic Europe [35, 41, 42]. U5a is a very ancient and important European haplogroup and is thought to have expanded eastward into central Siberia. It has been observed in human remains of the Neolithic in the Baikal regions and the Bronze Age in the Altai and Xinjiang [39, 43, 44]. The U2e sequence observed in Xiaohe did not match any sequence in our database, the most matching sequences (showing one to two np differences) were mainly found in Europe. U2e also was an ancient European lineage like U5, and had spread into Central Eurasia in the Bronze Age [31, 39, 44]. The presence of individuals of Hgs H, T, U5a and U2e in Xiaohe indicates maternal lineages with an ultimate origin in Europe. HgU7 is absent in many parts of Europe, but its frequency increases to >4 % in the Near East and up to 5 % in Pakistan, reaching almost 10 % in Iranians, and its highest frequency in Gujarat. U7 haplogroup probably originated in the region between Iran and Indian Gujarat [45–47]. The U7 variant observed in Xiaohe is currently found mostly in Iran, Europe and the Tibetan plateau. In addition, we found one individual with the Indian lineage M5 [48]. Nowadays, the M5 variant observed in this study is found mainly in south and southwest Asia. The presence of hgs U7 and M5 in the Xiaohe people suggests that populations of west/south Asia contributed to the gene pool of the Tarim Basin during the Bronze Age.Fig. 3


Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China.

Li C, Ning C, Hagelberg E, Li H, Zhao Y, Li W, Abuduresule I, Zhu H, Zhou H - BMC Genet. (2015)

Median joining networks for mtDNA haplogroups K, C, D and G2a, based on HVS-I sequences between region np16050-16391. Circle areas are proportional to haplotype frequency. The length of the lines between nodes is proportional to the mutation steps. The diagnostic mutations used to classify the major branches are labeled on the line. The Number sign(#) and the following panels indicate the assumed root of each haplogroup
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4495690&req=5

Fig3: Median joining networks for mtDNA haplogroups K, C, D and G2a, based on HVS-I sequences between region np16050-16391. Circle areas are proportional to haplotype frequency. The length of the lines between nodes is proportional to the mutation steps. The diagnostic mutations used to classify the major branches are labeled on the line. The Number sign(#) and the following panels indicate the assumed root of each haplogroup
Mentions: The west Eurasian haplogroups of the Xiaohe people were more diverse (Hd = 0.9722 versus Hd = 0.8585), but less abundant (9 individuals versus 26 individuals) than the East Eurasian haplogroups. The predominant lineage was UK, of which four different subhaplogroups were observed: one K, two U7, two U5a, and one U2e. One individual with Hg T and one individual with Hg H were detected. The latter carried the HVRI Cambridge Reference Sequence (CRS), very common in living Europeans [31, 33, 34]. This sequence has also been observed in ancient human remains of Neolithic Europe [35, 36], the Bronze Age in central Asia [37], as well as the Mongolian Altai Mountains [38], and the Iron Age in southern Siberia [39]. The T haplotype observed in Xiaohe is found exclusively in Europeans, with the exception of Iran in modern people, and found mostly as T2. It has also been observed in human remains of Neolithic Europe [36], the Eneolithic/Bronze Age in the Pontic Caspian steppe [40], and the Bronze Age in Kazakhstan [37]. No exact match was found for the Xiaohe K haplotype in our database. The network shows that it clusters into one subclade with the 16093 mutation, which is mainly distributed in Europe and Iran (Fig. 3a). Therefore, the K haplotype sequenced in Xiaohe is currently uninformative about population affinity. There are two U5a haplotypes observed in Xiaohe, the basal U5a*(16192 T-16256 T-16270 T) was found broadly in Europe and central Asia, while the derived U5a haplotype(16192 T-16256 T-16270 T-291 T) was found exclusively in Europe for modern people. These two sequences have also been found in Neolithic Europe [35, 41, 42]. U5a is a very ancient and important European haplogroup and is thought to have expanded eastward into central Siberia. It has been observed in human remains of the Neolithic in the Baikal regions and the Bronze Age in the Altai and Xinjiang [39, 43, 44]. The U2e sequence observed in Xiaohe did not match any sequence in our database, the most matching sequences (showing one to two np differences) were mainly found in Europe. U2e also was an ancient European lineage like U5, and had spread into Central Eurasia in the Bronze Age [31, 39, 44]. The presence of individuals of Hgs H, T, U5a and U2e in Xiaohe indicates maternal lineages with an ultimate origin in Europe. HgU7 is absent in many parts of Europe, but its frequency increases to >4 % in the Near East and up to 5 % in Pakistan, reaching almost 10 % in Iranians, and its highest frequency in Gujarat. U7 haplogroup probably originated in the region between Iran and Indian Gujarat [45–47]. The U7 variant observed in Xiaohe is currently found mostly in Iran, Europe and the Tibetan plateau. In addition, we found one individual with the Indian lineage M5 [48]. Nowadays, the M5 variant observed in this study is found mainly in south and southwest Asia. The presence of hgs U7 and M5 in the Xiaohe people suggests that populations of west/south Asia contributed to the gene pool of the Tarim Basin during the Bronze Age.Fig. 3

Bottom Line: Xiaohe people carried a wide variety of maternal lineages, including West Eurasian lineages H, K, U5, U7, U2e, T, R*, East Eurasian lineages B, C4, C5, D, G2a and Indian lineage M5.Our results indicate that the people of the Tarim Basin had a diverse maternal ancestry, with origins in Europe, central/eastern Siberia and southern/western Asia.These findings, together with information on the cultural context of the Xiaohe cemetery, can be used to test contrasting hypotheses of route of settlement into the Tarim Basin.

View Article: PubMed Central - PubMed

Affiliation: College of Life Science, Jilin University, Changchun, 130023, P. R. China. chunxiangli@jlu.edu.cn.

ABSTRACT

Background: The Tarim Basin in western China, known for its amazingly well-preserved mummies, has been for thousands of years an important crossroad between the eastern and western parts of Eurasia. Despite its key position in communications and migration, and highly diverse peoples, languages and cultures, its prehistory is poorly understood. To shed light on the origin of the populations of the Tarim Basin, we analysed mitochondrial DNA polymorphisms in human skeletal remains excavated from the Xiaohe cemetery, used by the local community between 4000 and 3500 years before present, and possibly representing some of the earliest settlers.

Results: Xiaohe people carried a wide variety of maternal lineages, including West Eurasian lineages H, K, U5, U7, U2e, T, R*, East Eurasian lineages B, C4, C5, D, G2a and Indian lineage M5.

Conclusion: Our results indicate that the people of the Tarim Basin had a diverse maternal ancestry, with origins in Europe, central/eastern Siberia and southern/western Asia. These findings, together with information on the cultural context of the Xiaohe cemetery, can be used to test contrasting hypotheses of route of settlement into the Tarim Basin.

No MeSH data available.