Limits...
Exposure to Leishmania spp. and sand flies in domestic animals in northwestern Ethiopia.

Rohousova I, Talmi-Frank D, Kostalova T, Polanska N, Lestinova T, Kassahun A, Yasur-Landau D, Maia C, King R, Votypka J, Jaffe CL, Warburg A, Hailu A, Volf P, Baneth G - Parasit Vectors (2015)

Bottom Line: Serum anti-sand fly saliva antibodies were used as a marker of exposure to the vector sand fly, Phlebotomus orientalis.Sequencing indicated that the animals were infected with parasites of the L. donovani complex but could not distinguish between L. infantum and L. donovani.The detection of L. donovani complex DNA in the blood of domestic animals, the reported seroprevalence to the L. donovani antigen, and the widespread exposure to sand fly saliva among domestic animals indicate that they are frequently exposed to Leishmania infection and are likely to participate in the epidemiology of Leishmania infection, either as potential blood sources for sand flies or possibly as parasite hosts.

View Article: PubMed Central - PubMed

Affiliation: Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague 2, Czech Republic. kolarova2011@gmail.com.

ABSTRACT

Background: Human visceral leishmaniasis caused by Leishmania donovani is considered an anthroponosis; however, Leishmania-infected animals have been increasingly reported in L. donovani foci, and the role of these animals as reservoirs for human L. donovani infection remains unclear.

Methods: We conducted a study of domestic animals (goats, sheep, cows, dogs, and donkeys) in three L. donovani foci in northwestern Ethiopia. Domestic animals were screened for Leishmania DNA and for anti-L. donovani IgG. Serum anti-sand fly saliva antibodies were used as a marker of exposure to the vector sand fly, Phlebotomus orientalis.

Results: Of 546 animals tested, 32 (5.9%) were positive for Leishmania DNA, with positive animals identified among all species studied. Sequencing indicated that the animals were infected with parasites of the L. donovani complex but could not distinguish between L. infantum and L. donovani. A total of 18.9% of the animals were seropositive for anti-L. donovani IgG, and 23.1% of the animals were seropositive for anti-P. orientalis saliva IgG, with the highest seroprevalence observed in dogs and sheep. A positive correlation was found between anti-P. orientalis saliva and anti-L. donovani IgGs in cows, goats, and sheep.

Conclusions: The detection of L. donovani complex DNA in the blood of domestic animals, the reported seroprevalence to the L. donovani antigen, and the widespread exposure to sand fly saliva among domestic animals indicate that they are frequently exposed to Leishmania infection and are likely to participate in the epidemiology of Leishmania infection, either as potential blood sources for sand flies or possibly as parasite hosts.

No MeSH data available.


Related in: MedlinePlus

Specificity of the anti-sand fly saliva IgG antibody response. The reactivity of Phlebotomus orientalis salivary gland homogenates (SGH) with sera from mice (a) and dogs (b) repeatedly exposed to a single sand fly species was measured via ELISA. In graph A, SGH was incubated with sera from mice exposed to P. orientalis (Anti-ORI), Sergentomyia schwetzi (Anti-SCHW), P. papatasi (Anti-PAP), P. duboscqi (Anti-DUB), or P. arabicus (Anti-ARA). Each bar represents the mean for two serum samples ± the standard error. The values for the positive controls (the sera of mice incubated with homologous antigen) were as follows: S. schwetzi = 1.48 ± 0.43, P. papatasi = 2.38 ± 0.32, P. duboscqi = 2.87 ± 0.60, and P. arabicus = 1.86 ± 0.24. In graph B, the SGH was incubated with the sera from dogs exposed to P. perniciosus (Anti-PER) or Lutzomyia longipalpis (Anti-LON). Seropositive Ethiopian dogs (Ethiopia) and dogs that had never been exposed to sand flies (neg) were used as positive and negative controls, respectively. Each bar represents the mean of five serum samples ± the standard error. The absorbencies of the sera incubated with the homologous antigen were 2.42 ± 0.06 for L. longipalpis and 1.73 ± 0.13 for P. perniciosus
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4495613&req=5

Fig3: Specificity of the anti-sand fly saliva IgG antibody response. The reactivity of Phlebotomus orientalis salivary gland homogenates (SGH) with sera from mice (a) and dogs (b) repeatedly exposed to a single sand fly species was measured via ELISA. In graph A, SGH was incubated with sera from mice exposed to P. orientalis (Anti-ORI), Sergentomyia schwetzi (Anti-SCHW), P. papatasi (Anti-PAP), P. duboscqi (Anti-DUB), or P. arabicus (Anti-ARA). Each bar represents the mean for two serum samples ± the standard error. The values for the positive controls (the sera of mice incubated with homologous antigen) were as follows: S. schwetzi = 1.48 ± 0.43, P. papatasi = 2.38 ± 0.32, P. duboscqi = 2.87 ± 0.60, and P. arabicus = 1.86 ± 0.24. In graph B, the SGH was incubated with the sera from dogs exposed to P. perniciosus (Anti-PER) or Lutzomyia longipalpis (Anti-LON). Seropositive Ethiopian dogs (Ethiopia) and dogs that had never been exposed to sand flies (neg) were used as positive and negative controls, respectively. Each bar represents the mean of five serum samples ± the standard error. The absorbencies of the sera incubated with the homologous antigen were 2.42 ± 0.06 for L. longipalpis and 1.73 ± 0.13 for P. perniciosus

Mentions: To verify the specificity of the anti-P. orientalis saliva antibodies we used sera from dogs and mice that had been experimentally exposed to a single sand fly species. In dogs, the reactivity of anti-P. perniciosus and anti-Lutzomyia longipalpis sera against P. orientalis salivary gland homogenate (SGH) was similar to that for sera from non-exposed dogs (Fig. 3a). However, all of the selected canine sera of Ethiopian origin reacted strongly to P. orientalis SGH (Fig. 3a). In mice, the P. orientalis salivary antigen reacted strongly only to the homologous IgGs (Fig. 3b). The reactivities of all heterologous antigen-antibody combinations were similar to those for sera from non-exposed mice (Fig. 3b).Fig. 3


Exposure to Leishmania spp. and sand flies in domestic animals in northwestern Ethiopia.

Rohousova I, Talmi-Frank D, Kostalova T, Polanska N, Lestinova T, Kassahun A, Yasur-Landau D, Maia C, King R, Votypka J, Jaffe CL, Warburg A, Hailu A, Volf P, Baneth G - Parasit Vectors (2015)

Specificity of the anti-sand fly saliva IgG antibody response. The reactivity of Phlebotomus orientalis salivary gland homogenates (SGH) with sera from mice (a) and dogs (b) repeatedly exposed to a single sand fly species was measured via ELISA. In graph A, SGH was incubated with sera from mice exposed to P. orientalis (Anti-ORI), Sergentomyia schwetzi (Anti-SCHW), P. papatasi (Anti-PAP), P. duboscqi (Anti-DUB), or P. arabicus (Anti-ARA). Each bar represents the mean for two serum samples ± the standard error. The values for the positive controls (the sera of mice incubated with homologous antigen) were as follows: S. schwetzi = 1.48 ± 0.43, P. papatasi = 2.38 ± 0.32, P. duboscqi = 2.87 ± 0.60, and P. arabicus = 1.86 ± 0.24. In graph B, the SGH was incubated with the sera from dogs exposed to P. perniciosus (Anti-PER) or Lutzomyia longipalpis (Anti-LON). Seropositive Ethiopian dogs (Ethiopia) and dogs that had never been exposed to sand flies (neg) were used as positive and negative controls, respectively. Each bar represents the mean of five serum samples ± the standard error. The absorbencies of the sera incubated with the homologous antigen were 2.42 ± 0.06 for L. longipalpis and 1.73 ± 0.13 for P. perniciosus
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4495613&req=5

Fig3: Specificity of the anti-sand fly saliva IgG antibody response. The reactivity of Phlebotomus orientalis salivary gland homogenates (SGH) with sera from mice (a) and dogs (b) repeatedly exposed to a single sand fly species was measured via ELISA. In graph A, SGH was incubated with sera from mice exposed to P. orientalis (Anti-ORI), Sergentomyia schwetzi (Anti-SCHW), P. papatasi (Anti-PAP), P. duboscqi (Anti-DUB), or P. arabicus (Anti-ARA). Each bar represents the mean for two serum samples ± the standard error. The values for the positive controls (the sera of mice incubated with homologous antigen) were as follows: S. schwetzi = 1.48 ± 0.43, P. papatasi = 2.38 ± 0.32, P. duboscqi = 2.87 ± 0.60, and P. arabicus = 1.86 ± 0.24. In graph B, the SGH was incubated with the sera from dogs exposed to P. perniciosus (Anti-PER) or Lutzomyia longipalpis (Anti-LON). Seropositive Ethiopian dogs (Ethiopia) and dogs that had never been exposed to sand flies (neg) were used as positive and negative controls, respectively. Each bar represents the mean of five serum samples ± the standard error. The absorbencies of the sera incubated with the homologous antigen were 2.42 ± 0.06 for L. longipalpis and 1.73 ± 0.13 for P. perniciosus
Mentions: To verify the specificity of the anti-P. orientalis saliva antibodies we used sera from dogs and mice that had been experimentally exposed to a single sand fly species. In dogs, the reactivity of anti-P. perniciosus and anti-Lutzomyia longipalpis sera against P. orientalis salivary gland homogenate (SGH) was similar to that for sera from non-exposed dogs (Fig. 3a). However, all of the selected canine sera of Ethiopian origin reacted strongly to P. orientalis SGH (Fig. 3a). In mice, the P. orientalis salivary antigen reacted strongly only to the homologous IgGs (Fig. 3b). The reactivities of all heterologous antigen-antibody combinations were similar to those for sera from non-exposed mice (Fig. 3b).Fig. 3

Bottom Line: Serum anti-sand fly saliva antibodies were used as a marker of exposure to the vector sand fly, Phlebotomus orientalis.Sequencing indicated that the animals were infected with parasites of the L. donovani complex but could not distinguish between L. infantum and L. donovani.The detection of L. donovani complex DNA in the blood of domestic animals, the reported seroprevalence to the L. donovani antigen, and the widespread exposure to sand fly saliva among domestic animals indicate that they are frequently exposed to Leishmania infection and are likely to participate in the epidemiology of Leishmania infection, either as potential blood sources for sand flies or possibly as parasite hosts.

View Article: PubMed Central - PubMed

Affiliation: Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague 2, Czech Republic. kolarova2011@gmail.com.

ABSTRACT

Background: Human visceral leishmaniasis caused by Leishmania donovani is considered an anthroponosis; however, Leishmania-infected animals have been increasingly reported in L. donovani foci, and the role of these animals as reservoirs for human L. donovani infection remains unclear.

Methods: We conducted a study of domestic animals (goats, sheep, cows, dogs, and donkeys) in three L. donovani foci in northwestern Ethiopia. Domestic animals were screened for Leishmania DNA and for anti-L. donovani IgG. Serum anti-sand fly saliva antibodies were used as a marker of exposure to the vector sand fly, Phlebotomus orientalis.

Results: Of 546 animals tested, 32 (5.9%) were positive for Leishmania DNA, with positive animals identified among all species studied. Sequencing indicated that the animals were infected with parasites of the L. donovani complex but could not distinguish between L. infantum and L. donovani. A total of 18.9% of the animals were seropositive for anti-L. donovani IgG, and 23.1% of the animals were seropositive for anti-P. orientalis saliva IgG, with the highest seroprevalence observed in dogs and sheep. A positive correlation was found between anti-P. orientalis saliva and anti-L. donovani IgGs in cows, goats, and sheep.

Conclusions: The detection of L. donovani complex DNA in the blood of domestic animals, the reported seroprevalence to the L. donovani antigen, and the widespread exposure to sand fly saliva among domestic animals indicate that they are frequently exposed to Leishmania infection and are likely to participate in the epidemiology of Leishmania infection, either as potential blood sources for sand flies or possibly as parasite hosts.

No MeSH data available.


Related in: MedlinePlus