Limits...
Animal Experiments in Biomedical Research: A Historical Perspective.

Franco NH - Animals (Basel) (2013)

Bottom Line: The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also been a cause of heated public, scientific and philosophical discussion for hundreds of years.This review, with a mainly European outlook, addresses the history of animal use in biomedical research, some of its main protagonists and antagonists, and its effect on society from Antiquity to the present day, while providing a historical context with which to understand how we have arrived at the current paradigm regarding the ethical treatment of animals in research.

View Article: PubMed Central - PubMed

Affiliation: Institute for Molecular and Cell Biology, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. nfranco@ibmc.up.pt.

ABSTRACT
The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also been a cause of heated public, scientific and philosophical discussion for hundreds of years. This review, with a mainly European outlook, addresses the history of animal use in biomedical research, some of its main protagonists and antagonists, and its effect on society from Antiquity to the present day, while providing a historical context with which to understand how we have arrived at the current paradigm regarding the ethical treatment of animals in research.

No MeSH data available.


Related in: MedlinePlus

Two outbred laboratory rats, of the Lister Hooded (Long–Evans) strain. Rodents are the most commonly used laboratory animals, making up nearly 80% of the total of animals used in the European Union, followed by cold-blooded animals (fish, amphibian and reptiles, making up a total of 9.6%) and birds (6.3%) [159] Photo: Francis Brosseron, reproduced with permission.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4495509&req=5

animals-03-00238-f005: Two outbred laboratory rats, of the Lister Hooded (Long–Evans) strain. Rodents are the most commonly used laboratory animals, making up nearly 80% of the total of animals used in the European Union, followed by cold-blooded animals (fish, amphibian and reptiles, making up a total of 9.6%) and birds (6.3%) [159] Photo: Francis Brosseron, reproduced with permission.

Mentions: Domesticated rats (Rattus norvegicus) were the first rodent species to be used for scientific purposes. Their use in physiological research dates to as early as 1828, but only in the first decades of the twentieth century did they become a preferred tool in research, after the development in 1909 of the first standard rat strain, the Wistar Rat, from which half of all rats used in laboratories today are estimated to have descended (for a historical perspective, see [153,154]) (Figure 5). The mouse (Mus musculus) had also been used in the nineteenth century, famously by Gregor Mendel in his 1850s studies on heredity of coat color, until the local bishop censored mouse rearing as inappropriate for a priest, which made him turn to using peas instead [155]. The mouse would be again picked up in the beginning of the nineteenth century by Lucien Cuénot (1866–1951) to demonstrate that mammals also possessed “genes” (a vague concept at the time) that followed the laws of Mendelian inheritance, and would since then become a privileged model in the study of genetics, a field that would grow exponentially after the discovery of the DNA structure in 1953 by James Watson (born 1928) and Francis Crick (1916–2004). In 1980 John Gordon and Franck Ruddle developed the first transgenic mouse [156], and in 1988, the first gene knockout model was produced, which granted Mario R. Capecchi (born 1937), Martin J. Evans (born 1941), and Oliver Smithies (born 1925) the 2007 Nobel Prize. In 2002, the mouse became the second mammal, after humans, to have its whole genome sequenced. These, along with other technologies, have opened unlimited possibilities for the understanding of gene function and their influence in several genetic and non-genetic diseases, and have made the mouse the most commonly used animal model in our day (for a historical overview of the use of the mouse model in research, see [157,158]), with prospects being that it will continue to have a central role in biomedicine in the foreseeable future.


Animal Experiments in Biomedical Research: A Historical Perspective.

Franco NH - Animals (Basel) (2013)

Two outbred laboratory rats, of the Lister Hooded (Long–Evans) strain. Rodents are the most commonly used laboratory animals, making up nearly 80% of the total of animals used in the European Union, followed by cold-blooded animals (fish, amphibian and reptiles, making up a total of 9.6%) and birds (6.3%) [159] Photo: Francis Brosseron, reproduced with permission.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4495509&req=5

animals-03-00238-f005: Two outbred laboratory rats, of the Lister Hooded (Long–Evans) strain. Rodents are the most commonly used laboratory animals, making up nearly 80% of the total of animals used in the European Union, followed by cold-blooded animals (fish, amphibian and reptiles, making up a total of 9.6%) and birds (6.3%) [159] Photo: Francis Brosseron, reproduced with permission.
Mentions: Domesticated rats (Rattus norvegicus) were the first rodent species to be used for scientific purposes. Their use in physiological research dates to as early as 1828, but only in the first decades of the twentieth century did they become a preferred tool in research, after the development in 1909 of the first standard rat strain, the Wistar Rat, from which half of all rats used in laboratories today are estimated to have descended (for a historical perspective, see [153,154]) (Figure 5). The mouse (Mus musculus) had also been used in the nineteenth century, famously by Gregor Mendel in his 1850s studies on heredity of coat color, until the local bishop censored mouse rearing as inappropriate for a priest, which made him turn to using peas instead [155]. The mouse would be again picked up in the beginning of the nineteenth century by Lucien Cuénot (1866–1951) to demonstrate that mammals also possessed “genes” (a vague concept at the time) that followed the laws of Mendelian inheritance, and would since then become a privileged model in the study of genetics, a field that would grow exponentially after the discovery of the DNA structure in 1953 by James Watson (born 1928) and Francis Crick (1916–2004). In 1980 John Gordon and Franck Ruddle developed the first transgenic mouse [156], and in 1988, the first gene knockout model was produced, which granted Mario R. Capecchi (born 1937), Martin J. Evans (born 1941), and Oliver Smithies (born 1925) the 2007 Nobel Prize. In 2002, the mouse became the second mammal, after humans, to have its whole genome sequenced. These, along with other technologies, have opened unlimited possibilities for the understanding of gene function and their influence in several genetic and non-genetic diseases, and have made the mouse the most commonly used animal model in our day (for a historical overview of the use of the mouse model in research, see [157,158]), with prospects being that it will continue to have a central role in biomedicine in the foreseeable future.

Bottom Line: The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also been a cause of heated public, scientific and philosophical discussion for hundreds of years.This review, with a mainly European outlook, addresses the history of animal use in biomedical research, some of its main protagonists and antagonists, and its effect on society from Antiquity to the present day, while providing a historical context with which to understand how we have arrived at the current paradigm regarding the ethical treatment of animals in research.

View Article: PubMed Central - PubMed

Affiliation: Institute for Molecular and Cell Biology, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. nfranco@ibmc.up.pt.

ABSTRACT
The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also been a cause of heated public, scientific and philosophical discussion for hundreds of years. This review, with a mainly European outlook, addresses the history of animal use in biomedical research, some of its main protagonists and antagonists, and its effect on society from Antiquity to the present day, while providing a historical context with which to understand how we have arrived at the current paradigm regarding the ethical treatment of animals in research.

No MeSH data available.


Related in: MedlinePlus