Limits...
Factors Influencing Production of Fusaristatin A in Fusarium graminearum.

Hegge A, Lønborg R, Nielsen DM, Sørensen JL - Metabolites (2015)

Bottom Line: Fusaristatin A consists of a C24 reduced polyketide and the three amino acids dehydroalanine, β-aminoisobutyric acid and glutamine and is biosynthesized by a collaboration of a polyketide synthase and a nonribosomal peptide synthetase.The results showed that yeast extract sucrose (YES) medium was the best medium for fusaristatin A production and that the optimal pH was 7.5 and temperature 25-30 °C.The results also showed that fusaristatin A was only present in the mycelium and not in the liquid, which suggests that fusaristatin A is stored intracellulally and not exported to the extracellular environment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark. ahegge12@student.aau.dk.

ABSTRACT
Fusarium graminearum is a ubiquitous plant pathogen, which is able to produce several bioactive secondary metabolites. Recently, the cyclic lipopeptide fusaristatin A was isolated from this species and the biosynthetic gene cluster identified. Fusaristatin A consists of a C24 reduced polyketide and the three amino acids dehydroalanine, β-aminoisobutyric acid and glutamine and is biosynthesized by a collaboration of a polyketide synthase and a nonribosomal peptide synthetase. To gain insight into the environmental factors, which controls the production of fusaristatin A, we cultivated F. graminearum under various conditions. We developed an LC-MS/MS method to quantify fusaristatin A in F. graminearum extracts. The results showed that yeast extract sucrose (YES) medium was the best medium for fusaristatin A production and that the optimal pH was 7.5 and temperature 25-30 °C. Furthermore, production of fusaristatin A was more than four times higher in stationary cultures than in agitated cultures when F. graminearum was grown in liquid YES medium. The results also showed that fusaristatin A was only present in the mycelium and not in the liquid, which suggests that fusaristatin A is stored intracellulally and not exported to the extracellular environment.

No MeSH data available.


Related in: MedlinePlus

(a) Structure of fusaristatin A. (b) Standard curve of fusaristatin A in a twofold dilution series (19.5–20,000 ng/mL). (c) Chromatograms of fusaristatin A in reference solution (1250 ng/mL) and in an extract from F. graminearum grown on yeast extract sucrose (YES) containing 8.8 µg/mL.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4495368&req=5

metabolites-05-00184-f001: (a) Structure of fusaristatin A. (b) Standard curve of fusaristatin A in a twofold dilution series (19.5–20,000 ng/mL). (c) Chromatograms of fusaristatin A in reference solution (1250 ng/mL) and in an extract from F. graminearum grown on yeast extract sucrose (YES) containing 8.8 µg/mL.

Mentions: Recently the biosynthetic gene cluster for fusaristatin A was identified in F. graminearum [9] and F. avenaceum [10]. Fusaristatin A is a cyclic lipopeptide consisting of C24 reduced polyketide connected to the three amino acids dehydroalanine, β-aminoisobutyric acid and glutamine (Figure 1A). Fusaristatin A was discovered in an unidentified Fusarium strain (YG-45) where it had an inhibitory effect against lung cancer cells LU 65 [11]. The compound has later been observed in F. tricinctum where it was induced through co-cultivating with Bacillus subtilis and Streptomyces lividans [12]. This observation is puzzling as fusaristatin A is not active against B. subtilis and S. lividans [12] or other bacteria including Staphylococcus aureus, S. pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis [11,12]. Minor effects against Xanthomonas oryzae has however been observed [13].


Factors Influencing Production of Fusaristatin A in Fusarium graminearum.

Hegge A, Lønborg R, Nielsen DM, Sørensen JL - Metabolites (2015)

(a) Structure of fusaristatin A. (b) Standard curve of fusaristatin A in a twofold dilution series (19.5–20,000 ng/mL). (c) Chromatograms of fusaristatin A in reference solution (1250 ng/mL) and in an extract from F. graminearum grown on yeast extract sucrose (YES) containing 8.8 µg/mL.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4495368&req=5

metabolites-05-00184-f001: (a) Structure of fusaristatin A. (b) Standard curve of fusaristatin A in a twofold dilution series (19.5–20,000 ng/mL). (c) Chromatograms of fusaristatin A in reference solution (1250 ng/mL) and in an extract from F. graminearum grown on yeast extract sucrose (YES) containing 8.8 µg/mL.
Mentions: Recently the biosynthetic gene cluster for fusaristatin A was identified in F. graminearum [9] and F. avenaceum [10]. Fusaristatin A is a cyclic lipopeptide consisting of C24 reduced polyketide connected to the three amino acids dehydroalanine, β-aminoisobutyric acid and glutamine (Figure 1A). Fusaristatin A was discovered in an unidentified Fusarium strain (YG-45) where it had an inhibitory effect against lung cancer cells LU 65 [11]. The compound has later been observed in F. tricinctum where it was induced through co-cultivating with Bacillus subtilis and Streptomyces lividans [12]. This observation is puzzling as fusaristatin A is not active against B. subtilis and S. lividans [12] or other bacteria including Staphylococcus aureus, S. pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis [11,12]. Minor effects against Xanthomonas oryzae has however been observed [13].

Bottom Line: Fusaristatin A consists of a C24 reduced polyketide and the three amino acids dehydroalanine, β-aminoisobutyric acid and glutamine and is biosynthesized by a collaboration of a polyketide synthase and a nonribosomal peptide synthetase.The results showed that yeast extract sucrose (YES) medium was the best medium for fusaristatin A production and that the optimal pH was 7.5 and temperature 25-30 °C.The results also showed that fusaristatin A was only present in the mycelium and not in the liquid, which suggests that fusaristatin A is stored intracellulally and not exported to the extracellular environment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark. ahegge12@student.aau.dk.

ABSTRACT
Fusarium graminearum is a ubiquitous plant pathogen, which is able to produce several bioactive secondary metabolites. Recently, the cyclic lipopeptide fusaristatin A was isolated from this species and the biosynthetic gene cluster identified. Fusaristatin A consists of a C24 reduced polyketide and the three amino acids dehydroalanine, β-aminoisobutyric acid and glutamine and is biosynthesized by a collaboration of a polyketide synthase and a nonribosomal peptide synthetase. To gain insight into the environmental factors, which controls the production of fusaristatin A, we cultivated F. graminearum under various conditions. We developed an LC-MS/MS method to quantify fusaristatin A in F. graminearum extracts. The results showed that yeast extract sucrose (YES) medium was the best medium for fusaristatin A production and that the optimal pH was 7.5 and temperature 25-30 °C. Furthermore, production of fusaristatin A was more than four times higher in stationary cultures than in agitated cultures when F. graminearum was grown in liquid YES medium. The results also showed that fusaristatin A was only present in the mycelium and not in the liquid, which suggests that fusaristatin A is stored intracellulally and not exported to the extracellular environment.

No MeSH data available.


Related in: MedlinePlus