Enthalpies of mixing of liquid ternary Co-Li-Sn alloys.
Bottom Line:
The investigations were performed along six sections by the addition of lithium to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 2:98, [Formula: see text]/[Formula: see text] ≈ 1:9, and [Formula: see text]/[Formula: see text] ≈ 3:17 as well as by the addition of cobalt to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 3:17, [Formula: see text]/[Formula: see text] ≈ 1:2, and [Formula: see text]/[Formula: see text] ≈ 1:1 at a temperature of 1,173 K.The Co-Li-Sn system shows exothermic behavior of the integral molar enthalpy of mixing in the investigated concentration range.The integral molar enthalpy of mixing of liquid Co-Li system was calculated by Miedema's model to fit our measured ternary data using an extended Redlich-Kister-Muggianu model for substitutional solutions.
View Article:
PubMed Central - PubMed
Affiliation: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, Vienna, Austria.
ABSTRACT
Abstract: The partial and integral molar enthalpies of mixing of liquid Co-Li-Sn alloys were determined using drop calorimetry. The investigations were performed along six sections by the addition of lithium to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 2:98, [Formula: see text]/[Formula: see text] ≈ 1:9, and [Formula: see text]/[Formula: see text] ≈ 3:17 as well as by the addition of cobalt to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 3:17, [Formula: see text]/[Formula: see text] ≈ 1:2, and [Formula: see text]/[Formula: see text] ≈ 1:1 at a temperature of 1,173 K. The Co-Li-Sn system shows exothermic behavior of the integral molar enthalpy of mixing in the investigated concentration range. The integral molar enthalpy of mixing of liquid Co-Li system was calculated by Miedema's model to fit our measured ternary data using an extended Redlich-Kister-Muggianu model for substitutional solutions. No MeSH data available. |
Related In:
Results -
Collection
getmorefigures.php?uid=PMC4495026&req=5
Mentions: Experimental integral molar enthalpies of mixing were plotted versus concentration of Li or Co and are shown in Figs. 1 and 2, respectively. The obtained results indicate that enthalpies of mixing in the investigated concentration range show exothermic behavior. The negative values of the integral molar enthalpy of mixing indicate preferred interactions between unlike kinds of atoms in the liquid state.Fig. 1 |
View Article: PubMed Central - PubMed
Affiliation: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, Vienna, Austria.
Abstract: The partial and integral molar enthalpies of mixing of liquid Co-Li-Sn alloys were determined using drop calorimetry. The investigations were performed along six sections by the addition of lithium to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 2:98, [Formula: see text]/[Formula: see text] ≈ 1:9, and [Formula: see text]/[Formula: see text] ≈ 3:17 as well as by the addition of cobalt to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 3:17, [Formula: see text]/[Formula: see text] ≈ 1:2, and [Formula: see text]/[Formula: see text] ≈ 1:1 at a temperature of 1,173 K. The Co-Li-Sn system shows exothermic behavior of the integral molar enthalpy of mixing in the investigated concentration range. The integral molar enthalpy of mixing of liquid Co-Li system was calculated by Miedema's model to fit our measured ternary data using an extended Redlich-Kister-Muggianu model for substitutional solutions.
No MeSH data available.