Limits...
Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition.

Caffa I, D'Agostino V, Damonte P, Soncini D, Cea M, Monacelli F, Odetti P, Ballestrero A, Provenzani A, Longo VD, Nencioni A - Oncotarget (2015)

Bottom Line: However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies.In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone.In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, University of Genoa, Genoa, Italy.

ABSTRACT
Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use.

No MeSH data available.


Related in: MedlinePlus

Overexpressed HRAS and HRAS V12 prohibit TKI activity potentiation through starvationA-C, HCT116, HCC827 and H3122 cells were retrovirally engineered to overexpress wild type HRAS, HRAS V12, or the control vector PBP. Successfully infected cells were selected with puromycin and used for protein lysate generation. HRAS and γ-tubulin levels were detected by immunoblotting. D, 6 × 105 PBP, HRAS and HRAS V12 H3122 cells/dish were plated in 100 mm Petri dishes in regular medium. 24 h later, the cell medium was removed and cells were incubated either in the same medium (CTR) or in starvation medium. 24 h later cells were treated or not with 400 nM crizotinib (criz). 1 h later or 24 h later cell lysates were prepared and phospho p42/44 (ERK, Thr202/Tyr204), total p42/p44, and HRAS (as detected in lysates generated after a 1 h incubation) were revealed by immunoblotting. E-G, 2 × 103 PBP, HRAS, or HRAS V12 H3122, HCT116, and HCC827 cells/well were plated in 96 well plates in regular culture medium. 24 h later, the cell medium was removed and cells were incubated either in regular medium (CTR) or in starvation medium (starvation). 24 h later, 10 nM gefitinib (gef), 400 nM crizotinib (criz) or 300 nM regorafenib (reg) were added where indicated. 72 h later, cell viability was detected by CellTiter96 Aqueous1. s+g: starvation+gefitinib; s+r: starvation+regorafenib; s+c: starvation+crizotinib.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494907&req=5

Figure 3: Overexpressed HRAS and HRAS V12 prohibit TKI activity potentiation through starvationA-C, HCT116, HCC827 and H3122 cells were retrovirally engineered to overexpress wild type HRAS, HRAS V12, or the control vector PBP. Successfully infected cells were selected with puromycin and used for protein lysate generation. HRAS and γ-tubulin levels were detected by immunoblotting. D, 6 × 105 PBP, HRAS and HRAS V12 H3122 cells/dish were plated in 100 mm Petri dishes in regular medium. 24 h later, the cell medium was removed and cells were incubated either in the same medium (CTR) or in starvation medium. 24 h later cells were treated or not with 400 nM crizotinib (criz). 1 h later or 24 h later cell lysates were prepared and phospho p42/44 (ERK, Thr202/Tyr204), total p42/p44, and HRAS (as detected in lysates generated after a 1 h incubation) were revealed by immunoblotting. E-G, 2 × 103 PBP, HRAS, or HRAS V12 H3122, HCT116, and HCC827 cells/well were plated in 96 well plates in regular culture medium. 24 h later, the cell medium was removed and cells were incubated either in regular medium (CTR) or in starvation medium (starvation). 24 h later, 10 nM gefitinib (gef), 400 nM crizotinib (criz) or 300 nM regorafenib (reg) were added where indicated. 72 h later, cell viability was detected by CellTiter96 Aqueous1. s+g: starvation+gefitinib; s+r: starvation+regorafenib; s+c: starvation+crizotinib.

Mentions: We subsequently, reasoned that, if this were the case, a constitutive activation of the MAPK signaling pathway would prohibit or, at least, reduce, the observed potentiation of TKI activity by starvation. Thus, we engineered HCC827, HCT116, and H3122 cells to overexpress either a wild type HRAS allele or HRAS V12 (Figure 3A-C) and treated these cells with gefitinib, regorafenib, or crizotinib with or without starvation, respectively. As shown for H3122 cells, expressing HRAS or HRAS V12 indeed led to higher levels of phosphorylated ERK in response to crizotinib alone or to crizotinib coupled to starvation conditions (Figure 3D). Interestingly, we found that the expression HRAS alleles sensitized two out of three cancer cell lines (H3122 and HCC827) to starvation, while HCT116 cells were not sensitized, possibly because this cell line already harbors a mutated KRAS, which may make these cells less affected by the genetic manipulation that we performed (Figure 3E-G). However, in all of the cell lines, both HRAS and HRAS V12 blunted the anti-proliferative activity of the TKIs, both alone and in combination with starvation, indicating that inhibition of the MAPK pathway indeed plays a key role in mediating the antitumor effects of TKIs in both conditions (Figure 3E-G).


Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition.

Caffa I, D'Agostino V, Damonte P, Soncini D, Cea M, Monacelli F, Odetti P, Ballestrero A, Provenzani A, Longo VD, Nencioni A - Oncotarget (2015)

Overexpressed HRAS and HRAS V12 prohibit TKI activity potentiation through starvationA-C, HCT116, HCC827 and H3122 cells were retrovirally engineered to overexpress wild type HRAS, HRAS V12, or the control vector PBP. Successfully infected cells were selected with puromycin and used for protein lysate generation. HRAS and γ-tubulin levels were detected by immunoblotting. D, 6 × 105 PBP, HRAS and HRAS V12 H3122 cells/dish were plated in 100 mm Petri dishes in regular medium. 24 h later, the cell medium was removed and cells were incubated either in the same medium (CTR) or in starvation medium. 24 h later cells were treated or not with 400 nM crizotinib (criz). 1 h later or 24 h later cell lysates were prepared and phospho p42/44 (ERK, Thr202/Tyr204), total p42/p44, and HRAS (as detected in lysates generated after a 1 h incubation) were revealed by immunoblotting. E-G, 2 × 103 PBP, HRAS, or HRAS V12 H3122, HCT116, and HCC827 cells/well were plated in 96 well plates in regular culture medium. 24 h later, the cell medium was removed and cells were incubated either in regular medium (CTR) or in starvation medium (starvation). 24 h later, 10 nM gefitinib (gef), 400 nM crizotinib (criz) or 300 nM regorafenib (reg) were added where indicated. 72 h later, cell viability was detected by CellTiter96 Aqueous1. s+g: starvation+gefitinib; s+r: starvation+regorafenib; s+c: starvation+crizotinib.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494907&req=5

Figure 3: Overexpressed HRAS and HRAS V12 prohibit TKI activity potentiation through starvationA-C, HCT116, HCC827 and H3122 cells were retrovirally engineered to overexpress wild type HRAS, HRAS V12, or the control vector PBP. Successfully infected cells were selected with puromycin and used for protein lysate generation. HRAS and γ-tubulin levels were detected by immunoblotting. D, 6 × 105 PBP, HRAS and HRAS V12 H3122 cells/dish were plated in 100 mm Petri dishes in regular medium. 24 h later, the cell medium was removed and cells were incubated either in the same medium (CTR) or in starvation medium. 24 h later cells were treated or not with 400 nM crizotinib (criz). 1 h later or 24 h later cell lysates were prepared and phospho p42/44 (ERK, Thr202/Tyr204), total p42/p44, and HRAS (as detected in lysates generated after a 1 h incubation) were revealed by immunoblotting. E-G, 2 × 103 PBP, HRAS, or HRAS V12 H3122, HCT116, and HCC827 cells/well were plated in 96 well plates in regular culture medium. 24 h later, the cell medium was removed and cells were incubated either in regular medium (CTR) or in starvation medium (starvation). 24 h later, 10 nM gefitinib (gef), 400 nM crizotinib (criz) or 300 nM regorafenib (reg) were added where indicated. 72 h later, cell viability was detected by CellTiter96 Aqueous1. s+g: starvation+gefitinib; s+r: starvation+regorafenib; s+c: starvation+crizotinib.
Mentions: We subsequently, reasoned that, if this were the case, a constitutive activation of the MAPK signaling pathway would prohibit or, at least, reduce, the observed potentiation of TKI activity by starvation. Thus, we engineered HCC827, HCT116, and H3122 cells to overexpress either a wild type HRAS allele or HRAS V12 (Figure 3A-C) and treated these cells with gefitinib, regorafenib, or crizotinib with or without starvation, respectively. As shown for H3122 cells, expressing HRAS or HRAS V12 indeed led to higher levels of phosphorylated ERK in response to crizotinib alone or to crizotinib coupled to starvation conditions (Figure 3D). Interestingly, we found that the expression HRAS alleles sensitized two out of three cancer cell lines (H3122 and HCC827) to starvation, while HCT116 cells were not sensitized, possibly because this cell line already harbors a mutated KRAS, which may make these cells less affected by the genetic manipulation that we performed (Figure 3E-G). However, in all of the cell lines, both HRAS and HRAS V12 blunted the anti-proliferative activity of the TKIs, both alone and in combination with starvation, indicating that inhibition of the MAPK pathway indeed plays a key role in mediating the antitumor effects of TKIs in both conditions (Figure 3E-G).

Bottom Line: However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies.In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone.In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, University of Genoa, Genoa, Italy.

ABSTRACT
Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use.

No MeSH data available.


Related in: MedlinePlus