Limits...
Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms.

Freund F, Stolc V - Animals (Basel) (2013)

Bottom Line: Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans.In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals.This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

View Article: PubMed Central - PubMed

Affiliation: GeoCosmo Science Group, SETI Institute, Mountain View, CA 94043, USA. Friedemann.T.Freund@nasa.gov.

ABSTRACT
Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

No MeSH data available.


Related in: MedlinePlus

CO concentration values representing averages for a 1° × 1° area (approximately 100 × 100 km2) around the epicenter of the Gujurat earthquake of January 26, 2001. The CO profile is broken down into the 7 altitude windows indicated in the insert.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494396&req=5

animals-03-00513-f002: CO concentration values representing averages for a 1° × 1° area (approximately 100 × 100 km2) around the epicenter of the Gujurat earthquake of January 26, 2001. The CO profile is broken down into the 7 altitude windows indicated in the insert.

Mentions: The Gujurat results are shown in Figure 2. The CO concentration values represent averages for a 1° × 1° area (approximately 100 × 100 km2). The CO profile is broken down into 7 altitude windows as indicated in the insert, from 0 up to 110 m, up to about 1,500 m, up to about 3000 m, and higher. The data show that the regional background CO concentration was always highest close to the ground, i.e., in the lowest altitude window, with values between 100 and 150 ppb. However, starting probably more than a week before the magnitude 7.6 seismic event, the CO concentration increased, reaching a maximum on January 19, 2001 around 240 ppbv in the air below 110 m. The total amount of CO in the air column would be enough to reach 500 ppm near the surface, a potentially lethal concentration because CO induces phase advancement into the oxidative respiratory phase of the metabolic cycle in all aerobic organisms. Indeed, CO acts in a manner similar to cyanide by binding to the heme in cytochrome c oxidase and inhibits electron transport and ATP production, which leads to an increased ROS production. This fundamental and universal mechanism of CO-induced ROS production during the redox cycle applies to all aerobic cells [67]. Therefore, a pre-EQ influx of h• charge carriers into the soil layer can cause gaseous CO release, which functions as a cellular signaling molecule that attenuates metabolic cycling toward stress (i.e., oxidative damage in living cells).


Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms.

Freund F, Stolc V - Animals (Basel) (2013)

CO concentration values representing averages for a 1° × 1° area (approximately 100 × 100 km2) around the epicenter of the Gujurat earthquake of January 26, 2001. The CO profile is broken down into the 7 altitude windows indicated in the insert.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494396&req=5

animals-03-00513-f002: CO concentration values representing averages for a 1° × 1° area (approximately 100 × 100 km2) around the epicenter of the Gujurat earthquake of January 26, 2001. The CO profile is broken down into the 7 altitude windows indicated in the insert.
Mentions: The Gujurat results are shown in Figure 2. The CO concentration values represent averages for a 1° × 1° area (approximately 100 × 100 km2). The CO profile is broken down into 7 altitude windows as indicated in the insert, from 0 up to 110 m, up to about 1,500 m, up to about 3000 m, and higher. The data show that the regional background CO concentration was always highest close to the ground, i.e., in the lowest altitude window, with values between 100 and 150 ppb. However, starting probably more than a week before the magnitude 7.6 seismic event, the CO concentration increased, reaching a maximum on January 19, 2001 around 240 ppbv in the air below 110 m. The total amount of CO in the air column would be enough to reach 500 ppm near the surface, a potentially lethal concentration because CO induces phase advancement into the oxidative respiratory phase of the metabolic cycle in all aerobic organisms. Indeed, CO acts in a manner similar to cyanide by binding to the heme in cytochrome c oxidase and inhibits electron transport and ATP production, which leads to an increased ROS production. This fundamental and universal mechanism of CO-induced ROS production during the redox cycle applies to all aerobic cells [67]. Therefore, a pre-EQ influx of h• charge carriers into the soil layer can cause gaseous CO release, which functions as a cellular signaling molecule that attenuates metabolic cycling toward stress (i.e., oxidative damage in living cells).

Bottom Line: Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans.In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals.This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

View Article: PubMed Central - PubMed

Affiliation: GeoCosmo Science Group, SETI Institute, Mountain View, CA 94043, USA. Friedemann.T.Freund@nasa.gov.

ABSTRACT
Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

No MeSH data available.


Related in: MedlinePlus