Limits...
Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms.

Freund F, Stolc V - Animals (Basel) (2013)

Bottom Line: Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans.In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals.This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

View Article: PubMed Central - PubMed

Affiliation: GeoCosmo Science Group, SETI Institute, Mountain View, CA 94043, USA. Friedemann.T.Freund@nasa.gov.

ABSTRACT
Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

No MeSH data available.


Related in: MedlinePlus

Ozone level changes associated with 88 strong earthquakes of magnitudes 4.5–7.2 in Central Asia from 1973 to 1985 (solid line) [59]. A Dobson unit is the column density of O3 in Earth atmosphere equivalent to a 10 µm thick layer of O3 under standard temperature and pressure. Dotted line: average O3 values during non-perturbed days; Dashed lines: 95% confidence level.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494396&req=5

animals-03-00513-f001: Ozone level changes associated with 88 strong earthquakes of magnitudes 4.5–7.2 in Central Asia from 1973 to 1985 (solid line) [59]. A Dobson unit is the column density of O3 in Earth atmosphere equivalent to a 10 µm thick layer of O3 under standard temperature and pressure. Dotted line: average O3 values during non-perturbed days; Dashed lines: 95% confidence level.

Mentions: A rise in the ozone levels during or after large earthquakes has been reported and interpreted as due to cracking of rocks at or near the surface with attendant formation of ozone through fracture-induced electric discharges [49]. However, there is also a report for a noticeable rise in ozone levels days before major earthquakes, when surface or near near-surface fracturing of rocks could not have occurred. Figure 1 shows the average of regional ozone levels 5 days before to 4 days after 88 strong earthquakes of magnitudes 4.5 to 7.2 that occurred in Central Asia from 1973 to 1985 [59]. The data were collected at fixed ground stations often hundreds of km from the epicenters. The measured O3 concentrations, given in Dobson units, represent variations that must have been observable over large regions. On the average, for the 88 reported events, elevated O3 contents are observed 2–4 days before with a maximum 3 days before these earthquakes.


Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms.

Freund F, Stolc V - Animals (Basel) (2013)

Ozone level changes associated with 88 strong earthquakes of magnitudes 4.5–7.2 in Central Asia from 1973 to 1985 (solid line) [59]. A Dobson unit is the column density of O3 in Earth atmosphere equivalent to a 10 µm thick layer of O3 under standard temperature and pressure. Dotted line: average O3 values during non-perturbed days; Dashed lines: 95% confidence level.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494396&req=5

animals-03-00513-f001: Ozone level changes associated with 88 strong earthquakes of magnitudes 4.5–7.2 in Central Asia from 1973 to 1985 (solid line) [59]. A Dobson unit is the column density of O3 in Earth atmosphere equivalent to a 10 µm thick layer of O3 under standard temperature and pressure. Dotted line: average O3 values during non-perturbed days; Dashed lines: 95% confidence level.
Mentions: A rise in the ozone levels during or after large earthquakes has been reported and interpreted as due to cracking of rocks at or near the surface with attendant formation of ozone through fracture-induced electric discharges [49]. However, there is also a report for a noticeable rise in ozone levels days before major earthquakes, when surface or near near-surface fracturing of rocks could not have occurred. Figure 1 shows the average of regional ozone levels 5 days before to 4 days after 88 strong earthquakes of magnitudes 4.5 to 7.2 that occurred in Central Asia from 1973 to 1985 [59]. The data were collected at fixed ground stations often hundreds of km from the epicenters. The measured O3 concentrations, given in Dobson units, represent variations that must have been observable over large regions. On the average, for the 88 reported events, elevated O3 contents are observed 2–4 days before with a maximum 3 days before these earthquakes.

Bottom Line: Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans.In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals.This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

View Article: PubMed Central - PubMed

Affiliation: GeoCosmo Science Group, SETI Institute, Mountain View, CA 94043, USA. Friedemann.T.Freund@nasa.gov.

ABSTRACT
Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

No MeSH data available.


Related in: MedlinePlus