Limits...
Conceptualising the Impact of Arousal and Affective State on Training Outcomes of Operant Conditioning.

Starling MJ, Branson N, Cody D, McGreevy PD - Animals (Basel) (2013)

Bottom Line: It provides a series of three-dimensional conceptual graphs as exemplars to describing putative influences of both affective state and arousal on the likelihood of dogs and horses performing commonly desired behaviours.These graphs are referred to as response landscapes, and they highlight the flexibility available for improving training efficacy and the likely need for different approaches to suit animals in different affective states and at various levels of arousal.Knowledge gaps are discussed and suggestions made for bridging them.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Veterinary Science, University of Sydney, Sydney NSW 2006, Australia. mjstarling@fastmail.com.au.

ABSTRACT
Animal training relies heavily on an understanding of species-specific behaviour as it integrates with operant conditioning principles. Following on from recent studies showing that affective states and arousal levels may correlate with behavioural outcomes, we explore the contribution of both affective state and arousal in behavioural responses to operant conditioning. This paper provides a framework for assessing how affective state and arousal may influence the efficacy of operant training methods. It provides a series of three-dimensional conceptual graphs as exemplars to describing putative influences of both affective state and arousal on the likelihood of dogs and horses performing commonly desired behaviours. These graphs are referred to as response landscapes, and they highlight the flexibility available for improving training efficacy and the likely need for different approaches to suit animals in different affective states and at various levels of arousal. Knowledge gaps are discussed and suggestions made for bridging them.

No MeSH data available.


Conceptual response landscapes for training two common behaviours in the domestic horse using different operant training methods.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494394&req=5

animals-03-00300-f006: Conceptual response landscapes for training two common behaviours in the domestic horse using different operant training methods.

Mentions: Figure 6 offers the contrast of two horse examples, training a horse to touch a target with its nose and training a horse to move forward with a rider in the saddle. In the figure, Red = positive reinforcement, blue = negative reinforcement, orange = negative punishment, green = positive punishment. The y-axis tracks the probability of the horse responding appropriately depending on its affective (z-axis) and arousal states (x-axis), both shown on a simple, representative scale of 0–10, where 0 is low arousal and a very negative affective state and 10 is high arousal and a very positive affective state, respectively. Figure 6(a) shows the training of a horse to touch a target on cue with its nose. Figure 6(b) shows the training of a horse to walk forward on cue from a rider in the saddle. Horses are generally more prone to reacting with flight than dogs, as prey animals are dependent on flight for safety. This is shown in the low efficacy of punishment-related training that may be likely to trigger evasive action. The targeting response landscape is dominated by positive reinforcement, as it is an approach behaviour and thus most suited to seeking reinforcement. In contrast, the response landscape in Figure 6(b) is dominated by negative reinforcement, as it is difficult to deliver any strong positive reinforcers from the saddle. Response landscape graphs may be accessed in interactive form at the following URL: http://hdl.handle.net/2123/8989.


Conceptualising the Impact of Arousal and Affective State on Training Outcomes of Operant Conditioning.

Starling MJ, Branson N, Cody D, McGreevy PD - Animals (Basel) (2013)

Conceptual response landscapes for training two common behaviours in the domestic horse using different operant training methods.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494394&req=5

animals-03-00300-f006: Conceptual response landscapes for training two common behaviours in the domestic horse using different operant training methods.
Mentions: Figure 6 offers the contrast of two horse examples, training a horse to touch a target with its nose and training a horse to move forward with a rider in the saddle. In the figure, Red = positive reinforcement, blue = negative reinforcement, orange = negative punishment, green = positive punishment. The y-axis tracks the probability of the horse responding appropriately depending on its affective (z-axis) and arousal states (x-axis), both shown on a simple, representative scale of 0–10, where 0 is low arousal and a very negative affective state and 10 is high arousal and a very positive affective state, respectively. Figure 6(a) shows the training of a horse to touch a target on cue with its nose. Figure 6(b) shows the training of a horse to walk forward on cue from a rider in the saddle. Horses are generally more prone to reacting with flight than dogs, as prey animals are dependent on flight for safety. This is shown in the low efficacy of punishment-related training that may be likely to trigger evasive action. The targeting response landscape is dominated by positive reinforcement, as it is an approach behaviour and thus most suited to seeking reinforcement. In contrast, the response landscape in Figure 6(b) is dominated by negative reinforcement, as it is difficult to deliver any strong positive reinforcers from the saddle. Response landscape graphs may be accessed in interactive form at the following URL: http://hdl.handle.net/2123/8989.

Bottom Line: It provides a series of three-dimensional conceptual graphs as exemplars to describing putative influences of both affective state and arousal on the likelihood of dogs and horses performing commonly desired behaviours.These graphs are referred to as response landscapes, and they highlight the flexibility available for improving training efficacy and the likely need for different approaches to suit animals in different affective states and at various levels of arousal.Knowledge gaps are discussed and suggestions made for bridging them.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Veterinary Science, University of Sydney, Sydney NSW 2006, Australia. mjstarling@fastmail.com.au.

ABSTRACT
Animal training relies heavily on an understanding of species-specific behaviour as it integrates with operant conditioning principles. Following on from recent studies showing that affective states and arousal levels may correlate with behavioural outcomes, we explore the contribution of both affective state and arousal in behavioural responses to operant conditioning. This paper provides a framework for assessing how affective state and arousal may influence the efficacy of operant training methods. It provides a series of three-dimensional conceptual graphs as exemplars to describing putative influences of both affective state and arousal on the likelihood of dogs and horses performing commonly desired behaviours. These graphs are referred to as response landscapes, and they highlight the flexibility available for improving training efficacy and the likely need for different approaches to suit animals in different affective states and at various levels of arousal. Knowledge gaps are discussed and suggestions made for bridging them.

No MeSH data available.