Limits...
GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

Berberich G, Schreiber U - Animals (Basel) (2013)

Bottom Line: The results showed linear alignments and clusters of approx. 3,000 RWA mounds.A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants.Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany. gabriele.berberich@uni-due.de.

ABSTRACT
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

No MeSH data available.


Related in: MedlinePlus

West Eifel study area: Spatial distribution pattern of known (dark blue dots) and new minerals (light blue dots) springs within the Quaternary volcanic field (a) as well as CO2 (blue dots) (b), Radon (green dots) (c) and Helium (orange dots) concentrations (d) in mineral springs and spatial distribution of RWA mounds (dark red dots; (b), (c), (d) [28]). Increasing gas concentrations are shown by increasing dots.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494391&req=5

animals-03-00475-f008: West Eifel study area: Spatial distribution pattern of known (dark blue dots) and new minerals (light blue dots) springs within the Quaternary volcanic field (a) as well as CO2 (blue dots) (b), Radon (green dots) (c) and Helium (orange dots) concentrations (d) in mineral springs and spatial distribution of RWA mounds (dark red dots; (b), (c), (d) [28]). Increasing gas concentrations are shown by increasing dots.

Mentions: In the West Eifel study area, 210 mineral springs were mapped. A total of 125 (59.5%) mineral springs were remapped: 26 new ones which show CO2 emissions, 95 are natural mineral springs and four are natural mineral springs with CO2 emissions. The mineral springs occur from North to South in four NE-SW trending spring corridors (cf.Figure 8(a)), from which the both corridors in the center of the Quaternary volcanic field are the most obvious [28]. Results of the Hough transform applied to the spatial distribution of mineral springs and mofettes correspond to those of the main stress regime: the opening direction of the Quaternary volcanic field (NW-SE), and the associated WSW-ENE extensional regime and the reactivated Variscan fault systems (NNE-SSW, NE-SW) [31].


GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

Berberich G, Schreiber U - Animals (Basel) (2013)

West Eifel study area: Spatial distribution pattern of known (dark blue dots) and new minerals (light blue dots) springs within the Quaternary volcanic field (a) as well as CO2 (blue dots) (b), Radon (green dots) (c) and Helium (orange dots) concentrations (d) in mineral springs and spatial distribution of RWA mounds (dark red dots; (b), (c), (d) [28]). Increasing gas concentrations are shown by increasing dots.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494391&req=5

animals-03-00475-f008: West Eifel study area: Spatial distribution pattern of known (dark blue dots) and new minerals (light blue dots) springs within the Quaternary volcanic field (a) as well as CO2 (blue dots) (b), Radon (green dots) (c) and Helium (orange dots) concentrations (d) in mineral springs and spatial distribution of RWA mounds (dark red dots; (b), (c), (d) [28]). Increasing gas concentrations are shown by increasing dots.
Mentions: In the West Eifel study area, 210 mineral springs were mapped. A total of 125 (59.5%) mineral springs were remapped: 26 new ones which show CO2 emissions, 95 are natural mineral springs and four are natural mineral springs with CO2 emissions. The mineral springs occur from North to South in four NE-SW trending spring corridors (cf.Figure 8(a)), from which the both corridors in the center of the Quaternary volcanic field are the most obvious [28]. Results of the Hough transform applied to the spatial distribution of mineral springs and mofettes correspond to those of the main stress regime: the opening direction of the Quaternary volcanic field (NW-SE), and the associated WSW-ENE extensional regime and the reactivated Variscan fault systems (NNE-SSW, NE-SW) [31].

Bottom Line: The results showed linear alignments and clusters of approx. 3,000 RWA mounds.A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants.Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany. gabriele.berberich@uni-due.de.

ABSTRACT
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

No MeSH data available.


Related in: MedlinePlus