Limits...
GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

Berberich G, Schreiber U - Animals (Basel) (2013)

Bottom Line: The results showed linear alignments and clusters of approx. 3,000 RWA mounds.A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants.Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany. gabriele.berberich@uni-due.de.

ABSTRACT
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

No MeSH data available.


Related in: MedlinePlus

In a comprehensive GeoBioScience-approach, different methods were combined and applied to investigate the relationship between RWA mounds and active tectonic fault systems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494391&req=5

animals-03-00475-f004: In a comprehensive GeoBioScience-approach, different methods were combined and applied to investigate the relationship between RWA mounds and active tectonic fault systems.

Mentions: In the study area and at the reference location Oberehe, a comprehensive investigation was successfully conducted in order to investigate the correlation between RWA mounds and an active tectonic fault regime. Therefore a combination of gas analyses (soil gas and gas of mineral springs and mofettes), area-wide GPS-mapping of RWA mounds to identify distribution pattern, evaluation of earthquake events and structural analyses were carried out (cf.Figure 4). This GeoBioScience-approach can be used to further understand settlement processes of RWA and to complement the knowledge of the active tectonic fault regime in the volcanic West Eifel.


GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

Berberich G, Schreiber U - Animals (Basel) (2013)

In a comprehensive GeoBioScience-approach, different methods were combined and applied to investigate the relationship between RWA mounds and active tectonic fault systems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494391&req=5

animals-03-00475-f004: In a comprehensive GeoBioScience-approach, different methods were combined and applied to investigate the relationship between RWA mounds and active tectonic fault systems.
Mentions: In the study area and at the reference location Oberehe, a comprehensive investigation was successfully conducted in order to investigate the correlation between RWA mounds and an active tectonic fault regime. Therefore a combination of gas analyses (soil gas and gas of mineral springs and mofettes), area-wide GPS-mapping of RWA mounds to identify distribution pattern, evaluation of earthquake events and structural analyses were carried out (cf.Figure 4). This GeoBioScience-approach can be used to further understand settlement processes of RWA and to complement the knowledge of the active tectonic fault regime in the volcanic West Eifel.

Bottom Line: The results showed linear alignments and clusters of approx. 3,000 RWA mounds.A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants.Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany. gabriele.berberich@uni-due.de.

ABSTRACT
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

No MeSH data available.


Related in: MedlinePlus