Limits...
GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

Berberich G, Schreiber U - Animals (Basel) (2013)

Bottom Line: The results showed linear alignments and clusters of approx. 3,000 RWA mounds.A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants.Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany. gabriele.berberich@uni-due.de.

ABSTRACT
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

No MeSH data available.


Related in: MedlinePlus

Position of the 1,140 km² study area within Germany (a), locations of the study area within the West Eifel (b) and the reference location Oberehe (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494391&req=5

animals-03-00475-f001: Position of the 1,140 km² study area within Germany (a), locations of the study area within the West Eifel (b) and the reference location Oberehe (c).

Mentions: The 1,140 km² study area (cf.Figure 1(a,b)) with its reference location Oberehe (cf.Figure 1(c)) is located in the volcanic West Eifel (approx. 100 km SW of Cologne, Germany). Though under geological and structural investigation for more than 200 years, only spatially limited information on active fault systems are available at present. In a detailed and statistically well based study, it was investigated whether a GeoBioScience-approach can be used to correlate and identify tectonically active fault systems in the 1,140 km² study area in the West Eifel. This approach included the mapping of RWA mounds and their spatial distribution, identification of gas anomalies, mapping of tectonic features and statistical analyses.


GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

Berberich G, Schreiber U - Animals (Basel) (2013)

Position of the 1,140 km² study area within Germany (a), locations of the study area within the West Eifel (b) and the reference location Oberehe (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494391&req=5

animals-03-00475-f001: Position of the 1,140 km² study area within Germany (a), locations of the study area within the West Eifel (b) and the reference location Oberehe (c).
Mentions: The 1,140 km² study area (cf.Figure 1(a,b)) with its reference location Oberehe (cf.Figure 1(c)) is located in the volcanic West Eifel (approx. 100 km SW of Cologne, Germany). Though under geological and structural investigation for more than 200 years, only spatially limited information on active fault systems are available at present. In a detailed and statistically well based study, it was investigated whether a GeoBioScience-approach can be used to correlate and identify tectonically active fault systems in the 1,140 km² study area in the West Eifel. This approach included the mapping of RWA mounds and their spatial distribution, identification of gas anomalies, mapping of tectonic features and statistical analyses.

Bottom Line: The results showed linear alignments and clusters of approx. 3,000 RWA mounds.A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants.Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany. gabriele.berberich@uni-due.de.

ABSTRACT
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

No MeSH data available.


Related in: MedlinePlus