Limits...
Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential.

Massé DI, Jarret G, Benchaar C, Saady NM - Animals (Basel) (2014)

Bottom Line: Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period.The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively.Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet.

View Article: PubMed Central - PubMed

Affiliation: Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada. Daniel.Masse@agr.gc.ca.

ABSTRACT
The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.

No MeSH data available.


Related in: MedlinePlus

Schematic diagram of the sequence batch reactor.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494299&req=5

animals-04-00082-f001: Schematic diagram of the sequence batch reactor.

Mentions: Bioenergy production measurements were performed on laboratory-scale anaerobic sequencing batch reactors (SBRs) operated under psychrophilic conditions. Six 54-L SBRs located in a controlled-environmental chamber operated at 25 ± 1 °C were used over a 4-month period. The details of the SBR are shown in Figure 1. At the beginning of the experiment, each SBR contained 20 kg of psychrophilic anaerobic inoculum obtained from a semi-commercial scale SBR operated at a temperature of 25 °C. The physico-chemical characteristics of the inoculum are given in Table 2. The semi-industrial digester was located at the Dairy and Swine Research and Development Centre, Sherbrooke, Quebec-Canada. The hydraulic retention time (HRT) was 30 d; the SBRs were operated with feed and react periods of 2 weeks each. The first 3-month period of operation was used to ensure that a steady state was reached and the last month, to determine daily biogas production. The organic loading rate (OLR) was equivalent to 3 g of COD L−1·day−1 during the feeding period. The amounts of slurry fed into the SBRs were 6.00 kg for the DDGS0 diet; 6.72 kg for the DDGS10 diet; and 6.00 kg for the DDGS30 diet. The contents of the SBRs were mixed twice a week for 5 min. A 100-mL sample of mixed liquor was collected after 5 min of mixing and analyzed to assess the level of degradation of the organic matter. Daily biogas production from slurry corresponding to each diet treatment (2 SBRs/dietary treatments) was monitored.


Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential.

Massé DI, Jarret G, Benchaar C, Saady NM - Animals (Basel) (2014)

Schematic diagram of the sequence batch reactor.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494299&req=5

animals-04-00082-f001: Schematic diagram of the sequence batch reactor.
Mentions: Bioenergy production measurements were performed on laboratory-scale anaerobic sequencing batch reactors (SBRs) operated under psychrophilic conditions. Six 54-L SBRs located in a controlled-environmental chamber operated at 25 ± 1 °C were used over a 4-month period. The details of the SBR are shown in Figure 1. At the beginning of the experiment, each SBR contained 20 kg of psychrophilic anaerobic inoculum obtained from a semi-commercial scale SBR operated at a temperature of 25 °C. The physico-chemical characteristics of the inoculum are given in Table 2. The semi-industrial digester was located at the Dairy and Swine Research and Development Centre, Sherbrooke, Quebec-Canada. The hydraulic retention time (HRT) was 30 d; the SBRs were operated with feed and react periods of 2 weeks each. The first 3-month period of operation was used to ensure that a steady state was reached and the last month, to determine daily biogas production. The organic loading rate (OLR) was equivalent to 3 g of COD L−1·day−1 during the feeding period. The amounts of slurry fed into the SBRs were 6.00 kg for the DDGS0 diet; 6.72 kg for the DDGS10 diet; and 6.00 kg for the DDGS30 diet. The contents of the SBRs were mixed twice a week for 5 min. A 100-mL sample of mixed liquor was collected after 5 min of mixing and analyzed to assess the level of degradation of the organic matter. Daily biogas production from slurry corresponding to each diet treatment (2 SBRs/dietary treatments) was monitored.

Bottom Line: Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period.The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively.Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet.

View Article: PubMed Central - PubMed

Affiliation: Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada. Daniel.Masse@agr.gc.ca.

ABSTRACT
The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.

No MeSH data available.


Related in: MedlinePlus