Limits...
Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity.

Shedlock DJ, Tingey C, Mahadevan L, Hutnick N, Reuschel EL, Kudchodkar S, Flingai S, Yan J, Kim JJ, Ugen KE, Weiner DB, Muthumani K - Vaccines (Basel) (2014)

Bottom Line: Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated.As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses.This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. shedlock@mail.med.upenn.edu.

ABSTRACT
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

No MeSH data available.


Related in: MedlinePlus

Molecular adjuvants enhance populations of B-cells at the site of immunization. Cells cultures from the muscle were analyzed by flow cytometry for expression of B220. The isolated cells were incubated in culture media for three days and these cells and then stained with DC subsets (CD11c+/CD11b+), B cells (B220+), T cells (CD4+ and CD8+ subsets), to distinguish monocytes/dendritic, B cells, T cells, respectively. Such differential staining allowed the exclusion of dendritic and T cells from subsequent analysis of B220 expression. Histograms show the B220+ expression on B cells exclusively using a specific mAb as well as an isotype-matched, irrelevant mAb as a control. The profile of an isotype-matched irrelevant Ab, used as a control (shaded area) is also indicated in the panels. MFI = mean fluorescent intensity which is proportional to the level of B220 expressing B cells.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494262&req=5

vaccines-02-00196-f005: Molecular adjuvants enhance populations of B-cells at the site of immunization. Cells cultures from the muscle were analyzed by flow cytometry for expression of B220. The isolated cells were incubated in culture media for three days and these cells and then stained with DC subsets (CD11c+/CD11b+), B cells (B220+), T cells (CD4+ and CD8+ subsets), to distinguish monocytes/dendritic, B cells, T cells, respectively. Such differential staining allowed the exclusion of dendritic and T cells from subsequent analysis of B220 expression. Histograms show the B220+ expression on B cells exclusively using a specific mAb as well as an isotype-matched, irrelevant mAb as a control. The profile of an isotype-matched irrelevant Ab, used as a control (shaded area) is also indicated in the panels. MFI = mean fluorescent intensity which is proportional to the level of B220 expressing B cells.

Mentions: One potential mechanism for the ability of the transcription factors to enhance antibody responses may be thorough increase in the number of activated B-cells. To access whether this was occurring, the pRelA administered muscle at the site of vaccination was biopsied three days after pEnv immunization with co-administrated pRelA followed by quantification of number of B220+ B-cells at the site of injection. The results indicated that pRelA and pEnv alone caused only a slight increase in B-cell trafficking to the site of injection compared to pVax1 administration alone (Figure 5). This is indicated by the MFI (mean fluorescent intensity) values shown in the individual FACS scans, which are directly proportional to the level of B220+ B cells. However, the addition of a pRelA adjuvant in combination with the pEnv vaccine further enhanced the number of B-cells at the site of injection.


Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity.

Shedlock DJ, Tingey C, Mahadevan L, Hutnick N, Reuschel EL, Kudchodkar S, Flingai S, Yan J, Kim JJ, Ugen KE, Weiner DB, Muthumani K - Vaccines (Basel) (2014)

Molecular adjuvants enhance populations of B-cells at the site of immunization. Cells cultures from the muscle were analyzed by flow cytometry for expression of B220. The isolated cells were incubated in culture media for three days and these cells and then stained with DC subsets (CD11c+/CD11b+), B cells (B220+), T cells (CD4+ and CD8+ subsets), to distinguish monocytes/dendritic, B cells, T cells, respectively. Such differential staining allowed the exclusion of dendritic and T cells from subsequent analysis of B220 expression. Histograms show the B220+ expression on B cells exclusively using a specific mAb as well as an isotype-matched, irrelevant mAb as a control. The profile of an isotype-matched irrelevant Ab, used as a control (shaded area) is also indicated in the panels. MFI = mean fluorescent intensity which is proportional to the level of B220 expressing B cells.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494262&req=5

vaccines-02-00196-f005: Molecular adjuvants enhance populations of B-cells at the site of immunization. Cells cultures from the muscle were analyzed by flow cytometry for expression of B220. The isolated cells were incubated in culture media for three days and these cells and then stained with DC subsets (CD11c+/CD11b+), B cells (B220+), T cells (CD4+ and CD8+ subsets), to distinguish monocytes/dendritic, B cells, T cells, respectively. Such differential staining allowed the exclusion of dendritic and T cells from subsequent analysis of B220 expression. Histograms show the B220+ expression on B cells exclusively using a specific mAb as well as an isotype-matched, irrelevant mAb as a control. The profile of an isotype-matched irrelevant Ab, used as a control (shaded area) is also indicated in the panels. MFI = mean fluorescent intensity which is proportional to the level of B220 expressing B cells.
Mentions: One potential mechanism for the ability of the transcription factors to enhance antibody responses may be thorough increase in the number of activated B-cells. To access whether this was occurring, the pRelA administered muscle at the site of vaccination was biopsied three days after pEnv immunization with co-administrated pRelA followed by quantification of number of B220+ B-cells at the site of injection. The results indicated that pRelA and pEnv alone caused only a slight increase in B-cell trafficking to the site of injection compared to pVax1 administration alone (Figure 5). This is indicated by the MFI (mean fluorescent intensity) values shown in the individual FACS scans, which are directly proportional to the level of B220+ B cells. However, the addition of a pRelA adjuvant in combination with the pEnv vaccine further enhanced the number of B-cells at the site of injection.

Bottom Line: Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated.As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses.This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. shedlock@mail.med.upenn.edu.

ABSTRACT
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

No MeSH data available.


Related in: MedlinePlus