Limits...
Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity.

Shedlock DJ, Tingey C, Mahadevan L, Hutnick N, Reuschel EL, Kudchodkar S, Flingai S, Yan J, Kim JJ, Ugen KE, Weiner DB, Muthumani K - Vaccines (Basel) (2014)

Bottom Line: Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated.As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses.This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. shedlock@mail.med.upenn.edu.

ABSTRACT
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

No MeSH data available.


Related in: MedlinePlus

Transcription factor adjuvants enhance antigen specific DNA vaccine induced T cell immunity. (A) Balb/C mice (n= 4/group) were vaccinated three times at two week intervals with HIV-1 pGag or pEnv alone, pGag or pEnv with co delivery of either pRelA or pTbet. Other control groups were pRelA or pTbet alone, or a pVax1 control. T cell responses (CD8+ and CD4+) were analyzed by IFN-γ ELISPOT one week following the third immunization and results for IFN-γ+ spot forming cells (SFC) per 106 MACS-purified T cells are indicated following re-stimulation with subtype B HIV-1 Env (B) or Gag (C) peptide pools. Samples were performed in triplicate, error bars represent SEM, and statistically significant values are shown; **p < 0.01, ***p < 0.001 and **** p < 0.0001, referring to comparison between the indicated vaccination groups provided in the graph. Experiments were performed twice independently with similar results.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494262&req=5

vaccines-02-00196-f002: Transcription factor adjuvants enhance antigen specific DNA vaccine induced T cell immunity. (A) Balb/C mice (n= 4/group) were vaccinated three times at two week intervals with HIV-1 pGag or pEnv alone, pGag or pEnv with co delivery of either pRelA or pTbet. Other control groups were pRelA or pTbet alone, or a pVax1 control. T cell responses (CD8+ and CD4+) were analyzed by IFN-γ ELISPOT one week following the third immunization and results for IFN-γ+ spot forming cells (SFC) per 106 MACS-purified T cells are indicated following re-stimulation with subtype B HIV-1 Env (B) or Gag (C) peptide pools. Samples were performed in triplicate, error bars represent SEM, and statistically significant values are shown; **p < 0.01, ***p < 0.001 and **** p < 0.0001, referring to comparison between the indicated vaccination groups provided in the graph. Experiments were performed twice independently with similar results.

Mentions: The contribution of pRelA and pTbet, in terms of enhancing vaccine-induced immunity, was then assessed. Balb/C mice (n = 4/group) were vaccinated three times with 25 µg of pEnv or pGag either with or without 25 µg of pRelA or pTbet, 25 µg of pRelA or pTbet alone, or with 25 µg of a control plasmid (pVax1; Figure 2). The vaccines and adjuvants were delivered in 25 µL of PBS by in vivo EP. Animals were sacrificed on day 35, (i.e., seven days after the third vaccination) followed by isolation of splenocytes for immune analysis by IFN-γ ELISpot. In this assay, HIV-1 Env or Gag peptide pools were used for stimulation of MACS-purified CD4+ or CD8+ T cells and the IFN-γ ELISpot results are displayed in Figure 2. Both CD4+ and CD8+ T-cell responses were observed to be significantly increased in mice vaccinated with pEnv and co-administrated pRelA compared with pEnv alone. Likewise, immunization with pEnv with co-administrated pTbet compared to pEnv alone demonstrated significant increases in CD4+ and CD8+ T cell responses (Figure 2B).


Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity.

Shedlock DJ, Tingey C, Mahadevan L, Hutnick N, Reuschel EL, Kudchodkar S, Flingai S, Yan J, Kim JJ, Ugen KE, Weiner DB, Muthumani K - Vaccines (Basel) (2014)

Transcription factor adjuvants enhance antigen specific DNA vaccine induced T cell immunity. (A) Balb/C mice (n= 4/group) were vaccinated three times at two week intervals with HIV-1 pGag or pEnv alone, pGag or pEnv with co delivery of either pRelA or pTbet. Other control groups were pRelA or pTbet alone, or a pVax1 control. T cell responses (CD8+ and CD4+) were analyzed by IFN-γ ELISPOT one week following the third immunization and results for IFN-γ+ spot forming cells (SFC) per 106 MACS-purified T cells are indicated following re-stimulation with subtype B HIV-1 Env (B) or Gag (C) peptide pools. Samples were performed in triplicate, error bars represent SEM, and statistically significant values are shown; **p < 0.01, ***p < 0.001 and **** p < 0.0001, referring to comparison between the indicated vaccination groups provided in the graph. Experiments were performed twice independently with similar results.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494262&req=5

vaccines-02-00196-f002: Transcription factor adjuvants enhance antigen specific DNA vaccine induced T cell immunity. (A) Balb/C mice (n= 4/group) were vaccinated three times at two week intervals with HIV-1 pGag or pEnv alone, pGag or pEnv with co delivery of either pRelA or pTbet. Other control groups were pRelA or pTbet alone, or a pVax1 control. T cell responses (CD8+ and CD4+) were analyzed by IFN-γ ELISPOT one week following the third immunization and results for IFN-γ+ spot forming cells (SFC) per 106 MACS-purified T cells are indicated following re-stimulation with subtype B HIV-1 Env (B) or Gag (C) peptide pools. Samples were performed in triplicate, error bars represent SEM, and statistically significant values are shown; **p < 0.01, ***p < 0.001 and **** p < 0.0001, referring to comparison between the indicated vaccination groups provided in the graph. Experiments were performed twice independently with similar results.
Mentions: The contribution of pRelA and pTbet, in terms of enhancing vaccine-induced immunity, was then assessed. Balb/C mice (n = 4/group) were vaccinated three times with 25 µg of pEnv or pGag either with or without 25 µg of pRelA or pTbet, 25 µg of pRelA or pTbet alone, or with 25 µg of a control plasmid (pVax1; Figure 2). The vaccines and adjuvants were delivered in 25 µL of PBS by in vivo EP. Animals were sacrificed on day 35, (i.e., seven days after the third vaccination) followed by isolation of splenocytes for immune analysis by IFN-γ ELISpot. In this assay, HIV-1 Env or Gag peptide pools were used for stimulation of MACS-purified CD4+ or CD8+ T cells and the IFN-γ ELISpot results are displayed in Figure 2. Both CD4+ and CD8+ T-cell responses were observed to be significantly increased in mice vaccinated with pEnv and co-administrated pRelA compared with pEnv alone. Likewise, immunization with pEnv with co-administrated pTbet compared to pEnv alone demonstrated significant increases in CD4+ and CD8+ T cell responses (Figure 2B).

Bottom Line: Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated.As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses.This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. shedlock@mail.med.upenn.edu.

ABSTRACT
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

No MeSH data available.


Related in: MedlinePlus