Limits...
Vector Design for Improved DNA Vaccine Efficacy, Safety and Production.

Williams JA - Vaccines (Basel) (2013)

Bottom Line: Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery.These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes.Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.

View Article: PubMed Central - PubMed

Affiliation: Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA. jim@natx.com.

ABSTRACT
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.

No MeSH data available.


Related in: MedlinePlus

DNA vaccine vectors. (a,b) 1st; (c) 2nd; and (d) 3rd; generation DNA Vaccine vectors; (e) 2nd and 3rd generation vectors increase in vivo expression compared to first generation vector gWIZ. 5 µg muSEAP vectors delivered intramuscularly with EP to mice on day 0, serum muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than gWIZ or 2nd generation vector NTC8385 (p-value = 0.05; Mann-Whitney rank-sum test); (f) 3rd generation vectors dramatically increase in vivo expression, compared to 2nd generation. 50 µg muSEAP vectors in 50 µL saline delivered intradermally to mice with EP on day 0, muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than 2nd generation vector NTC8685 (p-value = 0.05; Mann-Whitney rank-sum test). NTC8685 is a 2nd generation vector similar to NTC8385. The NTC8385 1,518 basepair (bp) bacterial region (spacer region) is reduced to 855 bp in NTC8385-min and 454 bp in NTC9385R. This compares to 2,678 bp for gWIZ, and 1,970 bp for pVAX1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494225&req=5

vaccines-01-00225-f002: DNA vaccine vectors. (a,b) 1st; (c) 2nd; and (d) 3rd; generation DNA Vaccine vectors; (e) 2nd and 3rd generation vectors increase in vivo expression compared to first generation vector gWIZ. 5 µg muSEAP vectors delivered intramuscularly with EP to mice on day 0, serum muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than gWIZ or 2nd generation vector NTC8385 (p-value = 0.05; Mann-Whitney rank-sum test); (f) 3rd generation vectors dramatically increase in vivo expression, compared to 2nd generation. 50 µg muSEAP vectors in 50 µL saline delivered intradermally to mice with EP on day 0, muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than 2nd generation vector NTC8685 (p-value = 0.05; Mann-Whitney rank-sum test). NTC8685 is a 2nd generation vector similar to NTC8385. The NTC8385 1,518 basepair (bp) bacterial region (spacer region) is reduced to 855 bp in NTC8385-min and 454 bp in NTC9385R. This compares to 2,678 bp for gWIZ, and 1,970 bp for pVAX1.

Mentions: First generation DNA vaccine vectors such as pVAX1 (Invitrogen; Figure 2b) and gWIZ (Genlantis, Figure 2a) contain the kanamycin resistance (kanR) gene as a selectable marker. pVAX1 is a basic vector that contains no eukaryotic or bacterial region optimizations, and consequently has relatively low manufacturing yield and expression in vitro and in vivo (mice) [21]. pVAX1 expression is reduced, compared to alternative CMV promoter vectors, by inhibitory sequences in the bacterial region (see Section 5.1). The pUC origin is oriented such that the pUC origin encoded cryptic eukaryotic promoter [19] will transcribe RNA antisense to the transgene (Figure 2b); this may produce dsRNA and reduce expression by RNA interference or PKR mediated translational inhibition. The gWIZ vector has 5-fold improved expression and 2-fold increased manufacturing yields relative to pVAX1 [21] due to extensive optimization of the orientation and composition of the bacterial region [17] and addition of an intron upstream of the transgene.


Vector Design for Improved DNA Vaccine Efficacy, Safety and Production.

Williams JA - Vaccines (Basel) (2013)

DNA vaccine vectors. (a,b) 1st; (c) 2nd; and (d) 3rd; generation DNA Vaccine vectors; (e) 2nd and 3rd generation vectors increase in vivo expression compared to first generation vector gWIZ. 5 µg muSEAP vectors delivered intramuscularly with EP to mice on day 0, serum muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than gWIZ or 2nd generation vector NTC8385 (p-value = 0.05; Mann-Whitney rank-sum test); (f) 3rd generation vectors dramatically increase in vivo expression, compared to 2nd generation. 50 µg muSEAP vectors in 50 µL saline delivered intradermally to mice with EP on day 0, muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than 2nd generation vector NTC8685 (p-value = 0.05; Mann-Whitney rank-sum test). NTC8685 is a 2nd generation vector similar to NTC8385. The NTC8385 1,518 basepair (bp) bacterial region (spacer region) is reduced to 855 bp in NTC8385-min and 454 bp in NTC9385R. This compares to 2,678 bp for gWIZ, and 1,970 bp for pVAX1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494225&req=5

vaccines-01-00225-f002: DNA vaccine vectors. (a,b) 1st; (c) 2nd; and (d) 3rd; generation DNA Vaccine vectors; (e) 2nd and 3rd generation vectors increase in vivo expression compared to first generation vector gWIZ. 5 µg muSEAP vectors delivered intramuscularly with EP to mice on day 0, serum muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than gWIZ or 2nd generation vector NTC8385 (p-value = 0.05; Mann-Whitney rank-sum test); (f) 3rd generation vectors dramatically increase in vivo expression, compared to 2nd generation. 50 µg muSEAP vectors in 50 µL saline delivered intradermally to mice with EP on day 0, muSEAP assayed on indicated days. 3rd generation vector NTC9385R has significantly higher expression than 2nd generation vector NTC8685 (p-value = 0.05; Mann-Whitney rank-sum test). NTC8685 is a 2nd generation vector similar to NTC8385. The NTC8385 1,518 basepair (bp) bacterial region (spacer region) is reduced to 855 bp in NTC8385-min and 454 bp in NTC9385R. This compares to 2,678 bp for gWIZ, and 1,970 bp for pVAX1.
Mentions: First generation DNA vaccine vectors such as pVAX1 (Invitrogen; Figure 2b) and gWIZ (Genlantis, Figure 2a) contain the kanamycin resistance (kanR) gene as a selectable marker. pVAX1 is a basic vector that contains no eukaryotic or bacterial region optimizations, and consequently has relatively low manufacturing yield and expression in vitro and in vivo (mice) [21]. pVAX1 expression is reduced, compared to alternative CMV promoter vectors, by inhibitory sequences in the bacterial region (see Section 5.1). The pUC origin is oriented such that the pUC origin encoded cryptic eukaryotic promoter [19] will transcribe RNA antisense to the transgene (Figure 2b); this may produce dsRNA and reduce expression by RNA interference or PKR mediated translational inhibition. The gWIZ vector has 5-fold improved expression and 2-fold increased manufacturing yields relative to pVAX1 [21] due to extensive optimization of the orientation and composition of the bacterial region [17] and addition of an intron upstream of the transgene.

Bottom Line: Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery.These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes.Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.

View Article: PubMed Central - PubMed

Affiliation: Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA. jim@natx.com.

ABSTRACT
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.

No MeSH data available.


Related in: MedlinePlus