Limits...
Strategy for Designing a Synthetic Tumor Vaccine: Multi-Component, Multivalency and Antigen Modification.

Huang ZH, Sun ZY, Gao Y, Chen PG, Liu YF, Chen YX, Li YM - Vaccines (Basel) (2014)

Bottom Line: However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements.To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated.In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China. huangzh05@mails.tsinghua.edu.cn.

ABSTRACT
Synthetic tumor vaccines have been proven to be promising for cancer immunotherapy. However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements. To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated. In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

No MeSH data available.


Multivalent template of a cyclopeptide.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494217&req=5

vaccines-02-00549-f006: Multivalent template of a cyclopeptide.

Mentions: Besides the linear backbone, cyclopeptide is also a useful template of multivalent vaccines, which can be formed by increasing the tendency of cyclization by proline [52] or the alternate sequence of l- and d-amino acid residues [53]. Danishyfsky and co-workers constructed a multivalent carbohydrate antigen on the cyclopeptide template and fixed the orientation of carbohydrate antigens by olefin metathesis (Figure 6) [54]. Dumy and co-workers designed a four-component vaccine consisting of multivalent carbohydrates on cyclopeptide, a T-helper cell epitope, a cytotoxic T-cell epitope and the TLR2 agonist [55]. This vaccine simultaneously elicited a humoral and cellular immune response, resulting in the suppression of the growth of MO5 xenograft tumor.


Strategy for Designing a Synthetic Tumor Vaccine: Multi-Component, Multivalency and Antigen Modification.

Huang ZH, Sun ZY, Gao Y, Chen PG, Liu YF, Chen YX, Li YM - Vaccines (Basel) (2014)

Multivalent template of a cyclopeptide.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494217&req=5

vaccines-02-00549-f006: Multivalent template of a cyclopeptide.
Mentions: Besides the linear backbone, cyclopeptide is also a useful template of multivalent vaccines, which can be formed by increasing the tendency of cyclization by proline [52] or the alternate sequence of l- and d-amino acid residues [53]. Danishyfsky and co-workers constructed a multivalent carbohydrate antigen on the cyclopeptide template and fixed the orientation of carbohydrate antigens by olefin metathesis (Figure 6) [54]. Dumy and co-workers designed a four-component vaccine consisting of multivalent carbohydrates on cyclopeptide, a T-helper cell epitope, a cytotoxic T-cell epitope and the TLR2 agonist [55]. This vaccine simultaneously elicited a humoral and cellular immune response, resulting in the suppression of the growth of MO5 xenograft tumor.

Bottom Line: However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements.To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated.In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China. huangzh05@mails.tsinghua.edu.cn.

ABSTRACT
Synthetic tumor vaccines have been proven to be promising for cancer immunotherapy. However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements. To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated. In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

No MeSH data available.