Limits...
Strategy for Designing a Synthetic Tumor Vaccine: Multi-Component, Multivalency and Antigen Modification.

Huang ZH, Sun ZY, Gao Y, Chen PG, Liu YF, Chen YX, Li YM - Vaccines (Basel) (2014)

Bottom Line: However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements.To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated.In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China. huangzh05@mails.tsinghua.edu.cn.

ABSTRACT
Synthetic tumor vaccines have been proven to be promising for cancer immunotherapy. However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements. To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated. In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

No MeSH data available.


Related in: MedlinePlus

Li’s vaccine consisting of the glycopeptide antigen and the T-cell epitope [25].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4494217&req=5

vaccines-02-00549-f002: Li’s vaccine consisting of the glycopeptide antigen and the T-cell epitope [25].

Mentions: Kunz and co-workers designed a two-component vaccine conjugating MUC1 glycopeptide with the T-cell epitope from carrier proteins using a flexible spacer [22,23]. The same strategy was used to synthesize vaccines consisting of different glycosylated MUC1 peptides. Vaccines of glycosylated MUC1 with STn on the Thr site in the PDTRP motif elicited the highest titer [24]. Li and co-workers synthesized vaccines consisting of 20-residue MUC1 glycopeptide and different T-cell epitopes from tetanus toxoid. Immunological evaluation demonstrated that the FNNFTVSFWLRVPKVSASHLE sequence could adjuvant the MUC1 glycopeptide to elicit a higher-level immune response without extra adjuvant (Figure 2) [25].


Strategy for Designing a Synthetic Tumor Vaccine: Multi-Component, Multivalency and Antigen Modification.

Huang ZH, Sun ZY, Gao Y, Chen PG, Liu YF, Chen YX, Li YM - Vaccines (Basel) (2014)

Li’s vaccine consisting of the glycopeptide antigen and the T-cell epitope [25].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4494217&req=5

vaccines-02-00549-f002: Li’s vaccine consisting of the glycopeptide antigen and the T-cell epitope [25].
Mentions: Kunz and co-workers designed a two-component vaccine conjugating MUC1 glycopeptide with the T-cell epitope from carrier proteins using a flexible spacer [22,23]. The same strategy was used to synthesize vaccines consisting of different glycosylated MUC1 peptides. Vaccines of glycosylated MUC1 with STn on the Thr site in the PDTRP motif elicited the highest titer [24]. Li and co-workers synthesized vaccines consisting of 20-residue MUC1 glycopeptide and different T-cell epitopes from tetanus toxoid. Immunological evaluation demonstrated that the FNNFTVSFWLRVPKVSASHLE sequence could adjuvant the MUC1 glycopeptide to elicit a higher-level immune response without extra adjuvant (Figure 2) [25].

Bottom Line: However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements.To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated.In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China. huangzh05@mails.tsinghua.edu.cn.

ABSTRACT
Synthetic tumor vaccines have been proven to be promising for cancer immunotherapy. However, the limitation of the specificity and efficiency of the synthetic tumor vaccines need further improvements. To overcome these difficulties, additional tumor-associated targets need to be identified, and optimized structural designs of vaccines need to be elaborated. In this review, we summarized the main strategies pursued in the design of synthetic tumor vaccines, such as multi-component, multivalency, antigen modification and other possible ways to improve the efficiency of synthetic tumor vaccines.

No MeSH data available.


Related in: MedlinePlus