Limits...
Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma.

Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J, Zheng S - J. Exp. Clin. Cancer Res. (2015)

Bottom Line: We found that miR-182 was upregulated in the hypoxia-based microarray.We then revealed that miR-182 was also significantly increased in the HCC tissues compared to the corresponding normal tissues.In addition, the suppression of RASA1 phenocopied the pro-angiogenesis effects of miR-182.

View Article: PubMed Central - PubMed

Affiliation: Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

ABSTRACT

Background: Hypoxia is a common feature of solid tumors, including HCC. And hypoxia has been reported to play an important role in HCC progression. However, the potential mechanism of miRNAs in hypoxia mediating HCC progression still remains unclear.

Methods: The HCC cells were cultured in the atmosphere of 1 % oxygen to induce hypoxia. The microRNA microarray was employed to search for the hypoxia-inducible miRNAs. RT-PCR, western blot and immunohistochemistry were used to detect the RNA and protein levels. HUVEC were applied to explore the angiogenesis level.

Results: We found that miR-182 was upregulated in the hypoxia-based microarray. We then revealed that miR-182 was also significantly increased in the HCC tissues compared to the corresponding normal tissues. In vitro capilliary tube formation assays showed that the miR-182 promoted angiogenesis. RASA1 was demonstrated as the direct target of miR-182. In addition, the suppression of RASA1 phenocopied the pro-angiogenesis effects of miR-182. Besides, RASA1 was also decreased in the hypoxia HCC cells while the inhibition of miR-182 partially restored the level of RASA1.

Conclusions: Our data showed that hypoxia regulated the expression of miR-182 and RASA1 to promote HCC angiogenesis.

No MeSH data available.


Related in: MedlinePlus

The level of RASA1 was reduced under hypoxia conditions and partly restored while transfected with anti-miR-182. a The mRNA and protein levels of RASA1 in SK-HEP-1 cells under normoxia or hypoxia or restored to normoxia were detected by RT-PCR and western blot. b SK-HEP-1 cells were transfected with miR-182 inhibitor or negative control in normoxic or hypoxic conditions. The mRNA and protein levels were detected. a-b The results indicate triplicates. (**P < 0.01)
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4493986&req=5

Fig4: The level of RASA1 was reduced under hypoxia conditions and partly restored while transfected with anti-miR-182. a The mRNA and protein levels of RASA1 in SK-HEP-1 cells under normoxia or hypoxia or restored to normoxia were detected by RT-PCR and western blot. b SK-HEP-1 cells were transfected with miR-182 inhibitor or negative control in normoxic or hypoxic conditions. The mRNA and protein levels were detected. a-b The results indicate triplicates. (**P < 0.01)

Mentions: To further determine the relationship between miR-182 and RASA1 under hypoxic conditions, we first explored the effects of hypoxia on RASA1. The results demonstrated that the mRNA and protein expression of RASA1 in HCC cells was significantly decreased when exposed to hypoxia (Fig. 4a). In addition, the RASA1 levels were significantly increased after the cells were restored to normoxic conditions (Fig. 4a). Given that RASA1 was the target of miR-182, we hypothesized that miR-182 might play a role in regulating hypoxia-reduced RASA1. To test this hypothesis, we transfected the SK-HEP-1 cells with miR-182 inhibitors. We found that the inhibition of miR-182 hindered the suppression effects of hypoxia on RASA1 expression (Fig. 4b). In conclusion, these results indicate that the reduction of RASA1 is mediated by up-regulation of miR-182 under hypoxic conditions.Fig. 4


Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma.

Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J, Zheng S - J. Exp. Clin. Cancer Res. (2015)

The level of RASA1 was reduced under hypoxia conditions and partly restored while transfected with anti-miR-182. a The mRNA and protein levels of RASA1 in SK-HEP-1 cells under normoxia or hypoxia or restored to normoxia were detected by RT-PCR and western blot. b SK-HEP-1 cells were transfected with miR-182 inhibitor or negative control in normoxic or hypoxic conditions. The mRNA and protein levels were detected. a-b The results indicate triplicates. (**P < 0.01)
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4493986&req=5

Fig4: The level of RASA1 was reduced under hypoxia conditions and partly restored while transfected with anti-miR-182. a The mRNA and protein levels of RASA1 in SK-HEP-1 cells under normoxia or hypoxia or restored to normoxia were detected by RT-PCR and western blot. b SK-HEP-1 cells were transfected with miR-182 inhibitor or negative control in normoxic or hypoxic conditions. The mRNA and protein levels were detected. a-b The results indicate triplicates. (**P < 0.01)
Mentions: To further determine the relationship between miR-182 and RASA1 under hypoxic conditions, we first explored the effects of hypoxia on RASA1. The results demonstrated that the mRNA and protein expression of RASA1 in HCC cells was significantly decreased when exposed to hypoxia (Fig. 4a). In addition, the RASA1 levels were significantly increased after the cells were restored to normoxic conditions (Fig. 4a). Given that RASA1 was the target of miR-182, we hypothesized that miR-182 might play a role in regulating hypoxia-reduced RASA1. To test this hypothesis, we transfected the SK-HEP-1 cells with miR-182 inhibitors. We found that the inhibition of miR-182 hindered the suppression effects of hypoxia on RASA1 expression (Fig. 4b). In conclusion, these results indicate that the reduction of RASA1 is mediated by up-regulation of miR-182 under hypoxic conditions.Fig. 4

Bottom Line: We found that miR-182 was upregulated in the hypoxia-based microarray.We then revealed that miR-182 was also significantly increased in the HCC tissues compared to the corresponding normal tissues.In addition, the suppression of RASA1 phenocopied the pro-angiogenesis effects of miR-182.

View Article: PubMed Central - PubMed

Affiliation: Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

ABSTRACT

Background: Hypoxia is a common feature of solid tumors, including HCC. And hypoxia has been reported to play an important role in HCC progression. However, the potential mechanism of miRNAs in hypoxia mediating HCC progression still remains unclear.

Methods: The HCC cells were cultured in the atmosphere of 1 % oxygen to induce hypoxia. The microRNA microarray was employed to search for the hypoxia-inducible miRNAs. RT-PCR, western blot and immunohistochemistry were used to detect the RNA and protein levels. HUVEC were applied to explore the angiogenesis level.

Results: We found that miR-182 was upregulated in the hypoxia-based microarray. We then revealed that miR-182 was also significantly increased in the HCC tissues compared to the corresponding normal tissues. In vitro capilliary tube formation assays showed that the miR-182 promoted angiogenesis. RASA1 was demonstrated as the direct target of miR-182. In addition, the suppression of RASA1 phenocopied the pro-angiogenesis effects of miR-182. Besides, RASA1 was also decreased in the hypoxia HCC cells while the inhibition of miR-182 partially restored the level of RASA1.

Conclusions: Our data showed that hypoxia regulated the expression of miR-182 and RASA1 to promote HCC angiogenesis.

No MeSH data available.


Related in: MedlinePlus