Limits...
Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles.

Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C - Nanoscale Res Lett (2014)

Bottom Line: With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water.The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin.Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Guangdong Medical College, Xincheng Road 1, Dongguan, 523808, Guangdong, People's Republic of China, 605911308@qq.com.

ABSTRACT
To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

No MeSH data available.


Related in: MedlinePlus

Size (A), zeta potential (B), TEM (C), and colloidal solution (D) of Qu-PMs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493852&req=5

Fig4: Size (A), zeta potential (B), TEM (C), and colloidal solution (D) of Qu-PMs.

Mentions: Polymeric micelle size is a critical parameter for assessment of drug preparations. Studies reported that nanoparticles with sizes around or below 100 nm showed optimum cellular and nuclear uptake in epithelial and smooth muscle cells [34]. In the light of this, PMs with small size and high surface charge are expected favorable to intestinal uptake and extension of circulation half-life, as well as being evaded by the reticuloendothelial system (RES).The average particle size and the PDI of Qu-PMs were studied by dynamic light scattering. The representative size distribution of Qu-PMs (Figure 4A) clearly shows a narrow size distribution with the average particle diameter of 79.00 ± 2.24 nm and PDI of 0.154 ± 0.044. This conforms to the best particle size range for oral absorption. Zeta potential measurements possessed a negative surface charge of -17.10 ± 2.30 mV for Qu-PMs (Figure 4B), which certainly could increase the stability of Qu-PMs in dispersion. Mono-disperse and spherical Qu-PMs with a diameter of approximately 80 nm was examined by TEM (Figure 4C), which is consistent with the above results of dynamic light scattering. One major purpose of encapsulating Qu in PMs was to enable Qu to be completely dispersible in aqueous media, and this was confirmed the uniform solution of Qu-PMs with an opalescence (Figure 4D).Figure 4


Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles.

Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C - Nanoscale Res Lett (2014)

Size (A), zeta potential (B), TEM (C), and colloidal solution (D) of Qu-PMs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493852&req=5

Fig4: Size (A), zeta potential (B), TEM (C), and colloidal solution (D) of Qu-PMs.
Mentions: Polymeric micelle size is a critical parameter for assessment of drug preparations. Studies reported that nanoparticles with sizes around or below 100 nm showed optimum cellular and nuclear uptake in epithelial and smooth muscle cells [34]. In the light of this, PMs with small size and high surface charge are expected favorable to intestinal uptake and extension of circulation half-life, as well as being evaded by the reticuloendothelial system (RES).The average particle size and the PDI of Qu-PMs were studied by dynamic light scattering. The representative size distribution of Qu-PMs (Figure 4A) clearly shows a narrow size distribution with the average particle diameter of 79.00 ± 2.24 nm and PDI of 0.154 ± 0.044. This conforms to the best particle size range for oral absorption. Zeta potential measurements possessed a negative surface charge of -17.10 ± 2.30 mV for Qu-PMs (Figure 4B), which certainly could increase the stability of Qu-PMs in dispersion. Mono-disperse and spherical Qu-PMs with a diameter of approximately 80 nm was examined by TEM (Figure 4C), which is consistent with the above results of dynamic light scattering. One major purpose of encapsulating Qu in PMs was to enable Qu to be completely dispersible in aqueous media, and this was confirmed the uniform solution of Qu-PMs with an opalescence (Figure 4D).Figure 4

Bottom Line: With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water.The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin.Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Guangdong Medical College, Xincheng Road 1, Dongguan, 523808, Guangdong, People's Republic of China, 605911308@qq.com.

ABSTRACT
To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

No MeSH data available.


Related in: MedlinePlus