Limits...
High-purity Cu nanocrystal synthesis by a dynamic decomposition method.

Jian X, Cao Y, Chen G, Wang C, Tang H, Yin L, Luan C, Liang Y, Jiang J, Wu S, Zeng Q, Wang F, Zhang C - Nanoscale Res Lett (2014)

Bottom Line: The growth was found to be influenced by the factors of reaction temperature, protective gas, and time.High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar.This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

View Article: PubMed Central - PubMed

Affiliation: Clean Energy Materials and Engineering Center, School of Energy Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, 611731, China, jianxian@uestc.edu.cn.

ABSTRACT
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

No MeSH data available.


TG/DTG curves of cupric (II) tartrate at different heating rates. (a) 5°C, (b) 10°C, (c) 15°C, (d) 20°C, and (e) 25°C/min.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493849&req=5

Fig2: TG/DTG curves of cupric (II) tartrate at different heating rates. (a) 5°C, (b) 10°C, (c) 15°C, (d) 20°C, and (e) 25°C/min.

Mentions: Figure 2 demonstrates the thermogravimetric (TG) and differential thermogravimetric (DTG) curves at different heating rates (5°C, 10°C, 15°C, 20°C, 25°C/min). From these curves, the temperatures for the dehydration of crystal water mainly range from 97.8°C to 116.4°C, and the temperatures for the decomposition process locate between 247.2°C and 267.5°C. The kinetic properties of the decomposition process were analyzed by employing the Flynn-Wall-Ozawa (FWO) method [28]:Figure 2


High-purity Cu nanocrystal synthesis by a dynamic decomposition method.

Jian X, Cao Y, Chen G, Wang C, Tang H, Yin L, Luan C, Liang Y, Jiang J, Wu S, Zeng Q, Wang F, Zhang C - Nanoscale Res Lett (2014)

TG/DTG curves of cupric (II) tartrate at different heating rates. (a) 5°C, (b) 10°C, (c) 15°C, (d) 20°C, and (e) 25°C/min.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493849&req=5

Fig2: TG/DTG curves of cupric (II) tartrate at different heating rates. (a) 5°C, (b) 10°C, (c) 15°C, (d) 20°C, and (e) 25°C/min.
Mentions: Figure 2 demonstrates the thermogravimetric (TG) and differential thermogravimetric (DTG) curves at different heating rates (5°C, 10°C, 15°C, 20°C, 25°C/min). From these curves, the temperatures for the dehydration of crystal water mainly range from 97.8°C to 116.4°C, and the temperatures for the decomposition process locate between 247.2°C and 267.5°C. The kinetic properties of the decomposition process were analyzed by employing the Flynn-Wall-Ozawa (FWO) method [28]:Figure 2

Bottom Line: The growth was found to be influenced by the factors of reaction temperature, protective gas, and time.High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar.This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

View Article: PubMed Central - PubMed

Affiliation: Clean Energy Materials and Engineering Center, School of Energy Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, 611731, China, jianxian@uestc.edu.cn.

ABSTRACT
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

No MeSH data available.