Limits...
High-purity Cu nanocrystal synthesis by a dynamic decomposition method.

Jian X, Cao Y, Chen G, Wang C, Tang H, Yin L, Luan C, Liang Y, Jiang J, Wu S, Zeng Q, Wang F, Zhang C - Nanoscale Res Lett (2014)

Bottom Line: The growth was found to be influenced by the factors of reaction temperature, protective gas, and time.High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar.This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

View Article: PubMed Central - PubMed

Affiliation: Clean Energy Materials and Engineering Center, School of Energy Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, 611731, China, jianxian@uestc.edu.cn.

ABSTRACT
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

No MeSH data available.


The DSC curve of the cupric tartrate at heating rate of 5°C/min under N2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493849&req=5

Fig1: The DSC curve of the cupric tartrate at heating rate of 5°C/min under N2.

Mentions: Figure 1 shows the differential scanning calorimetry (DSC) curve for cupric tartrate. As seen from the figure, the DSC curve contains four endothermic peaks (261.0°C, 271°C, 282.1°C, and 306.3°C) and two exothermic peaks (245.6°C and 294.6°C). There is also a peak locating at 61.9°C, which is attributed to the dehydration of the crystal water. These results are slightly different from those reported by Qin et al. who reported an endothermic peak at 266.4°C and two exothermic peaks at 290.9°C and 309.3°C [26]. This may be due to the different heating rate used during the DSC experiments. Qin et al. used a heating rate of 10°C/min, which is higher than the one used here. It may cost a longer time to reach the equilibrium of reactions at a higher heating rate.Figure 1


High-purity Cu nanocrystal synthesis by a dynamic decomposition method.

Jian X, Cao Y, Chen G, Wang C, Tang H, Yin L, Luan C, Liang Y, Jiang J, Wu S, Zeng Q, Wang F, Zhang C - Nanoscale Res Lett (2014)

The DSC curve of the cupric tartrate at heating rate of 5°C/min under N2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493849&req=5

Fig1: The DSC curve of the cupric tartrate at heating rate of 5°C/min under N2.
Mentions: Figure 1 shows the differential scanning calorimetry (DSC) curve for cupric tartrate. As seen from the figure, the DSC curve contains four endothermic peaks (261.0°C, 271°C, 282.1°C, and 306.3°C) and two exothermic peaks (245.6°C and 294.6°C). There is also a peak locating at 61.9°C, which is attributed to the dehydration of the crystal water. These results are slightly different from those reported by Qin et al. who reported an endothermic peak at 266.4°C and two exothermic peaks at 290.9°C and 309.3°C [26]. This may be due to the different heating rate used during the DSC experiments. Qin et al. used a heating rate of 10°C/min, which is higher than the one used here. It may cost a longer time to reach the equilibrium of reactions at a higher heating rate.Figure 1

Bottom Line: The growth was found to be influenced by the factors of reaction temperature, protective gas, and time.High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar.This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

View Article: PubMed Central - PubMed

Affiliation: Clean Energy Materials and Engineering Center, School of Energy Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, 611731, China, jianxian@uestc.edu.cn.

ABSTRACT
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

No MeSH data available.