Limits...
Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

Yang X, Wu S, Wang Y, Li Y, Chang D, Luo Y, Ye S, Hou Z - Nanoscale Res Lett (2014)

Bottom Line: The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively.The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs.These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China, yangxiangruix@126.com.

ABSTRACT
We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

No MeSH data available.


In vitrorelease profiles of HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs in PBS (1/15 M, pH 7.4).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493845&req=5

Fig6: In vitrorelease profiles of HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs in PBS (1/15 M, pH 7.4).

Mentions: The release behavior of the NPs is an important aspect because this information is directly related to the design of the nanodrug delivery system. An in vitro release study of the HCPT-loaded PEG-b-PLA NPs (7.0% content) was performed and that of HCPT-loaded PLA NPs (6.9% content) was used as comparison. As shown in Figure 6, both two NPs exhibited a slow, prolonged release profile over a period of 750 h. While the release rate was a little faster, the total HCPT released from the HCPT-loaded PEG-b-PLA NPs was 63.0%, much higher than that of the HCPT-loaded PLA NPs. The profiles may be explained by two factors. Firstly, the particle size of the HCPT-loaded PEG-b-PLA NPs was much smaller than that of the HCPT-loaded PLA NPs, reducing the total releasing time of the drug from the NPs. Second, the hydrophilic PEG on the surface of the HCPT-loaded PEG-b-PLA NPs was used as a buffer role, which could reduce the hydrophobic interaction between the drug and polymer matrix and facilitate the release of the drug from the NPs core. Both of the factors could promote the release of HCPT from the HCPT-loaded PEG-b-PLA NPs.Figure 6


Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

Yang X, Wu S, Wang Y, Li Y, Chang D, Luo Y, Ye S, Hou Z - Nanoscale Res Lett (2014)

In vitrorelease profiles of HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs in PBS (1/15 M, pH 7.4).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493845&req=5

Fig6: In vitrorelease profiles of HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs in PBS (1/15 M, pH 7.4).
Mentions: The release behavior of the NPs is an important aspect because this information is directly related to the design of the nanodrug delivery system. An in vitro release study of the HCPT-loaded PEG-b-PLA NPs (7.0% content) was performed and that of HCPT-loaded PLA NPs (6.9% content) was used as comparison. As shown in Figure 6, both two NPs exhibited a slow, prolonged release profile over a period of 750 h. While the release rate was a little faster, the total HCPT released from the HCPT-loaded PEG-b-PLA NPs was 63.0%, much higher than that of the HCPT-loaded PLA NPs. The profiles may be explained by two factors. Firstly, the particle size of the HCPT-loaded PEG-b-PLA NPs was much smaller than that of the HCPT-loaded PLA NPs, reducing the total releasing time of the drug from the NPs. Second, the hydrophilic PEG on the surface of the HCPT-loaded PEG-b-PLA NPs was used as a buffer role, which could reduce the hydrophobic interaction between the drug and polymer matrix and facilitate the release of the drug from the NPs core. Both of the factors could promote the release of HCPT from the HCPT-loaded PEG-b-PLA NPs.Figure 6

Bottom Line: The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively.The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs.These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China, yangxiangruix@126.com.

ABSTRACT
We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

No MeSH data available.