Limits...
Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

Yang X, Wu S, Wang Y, Li Y, Chang D, Luo Y, Ye S, Hou Z - Nanoscale Res Lett (2014)

Bottom Line: The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively.The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs.These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China, yangxiangruix@126.com.

ABSTRACT
We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

No MeSH data available.


The DSC patterns. (a) Bulk HCPT. (b) PLA. (c) HCPT-loaded PLA NPs. (d) PEG-b-PLA. (e) HCPT-loaded PEG-b-PLA NPs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493845&req=5

Fig2: The DSC patterns. (a) Bulk HCPT. (b) PLA. (c) HCPT-loaded PLA NPs. (d) PEG-b-PLA. (e) HCPT-loaded PEG-b-PLA NPs.

Mentions: The state of the incorporated drug in the HPLC-PEG-b-PLA NPs was proved using DSC (Figure 2). Under the experimental conditions, the DSC thermogram of the free HCPT had two endothermic peaks at 68.286 and 107.456°C, whereas that of the blank PEG-b-PLA particles showed a sharp endothermic peak at 53.253°C. In the curve of the HCPT-loaded PEG-b-PLA NPs, the peaks of HCPT and the peak of PEG-b-PLA were still existed, evidencing the presence of the crystalline drug in the HCPT-loaded PEG-b-PLA NPs. And the curves of PLA and HCPT-loaded PLA NPs also indicated the crystalline state of the incorporated drug in the HCPT-loaded PLA NPs.Figure 2


Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

Yang X, Wu S, Wang Y, Li Y, Chang D, Luo Y, Ye S, Hou Z - Nanoscale Res Lett (2014)

The DSC patterns. (a) Bulk HCPT. (b) PLA. (c) HCPT-loaded PLA NPs. (d) PEG-b-PLA. (e) HCPT-loaded PEG-b-PLA NPs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493845&req=5

Fig2: The DSC patterns. (a) Bulk HCPT. (b) PLA. (c) HCPT-loaded PLA NPs. (d) PEG-b-PLA. (e) HCPT-loaded PEG-b-PLA NPs.
Mentions: The state of the incorporated drug in the HPLC-PEG-b-PLA NPs was proved using DSC (Figure 2). Under the experimental conditions, the DSC thermogram of the free HCPT had two endothermic peaks at 68.286 and 107.456°C, whereas that of the blank PEG-b-PLA particles showed a sharp endothermic peak at 53.253°C. In the curve of the HCPT-loaded PEG-b-PLA NPs, the peaks of HCPT and the peak of PEG-b-PLA were still existed, evidencing the presence of the crystalline drug in the HCPT-loaded PEG-b-PLA NPs. And the curves of PLA and HCPT-loaded PLA NPs also indicated the crystalline state of the incorporated drug in the HCPT-loaded PLA NPs.Figure 2

Bottom Line: The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively.The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs.These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China, yangxiangruix@126.com.

ABSTRACT
We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

No MeSH data available.