Limits...
Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi.

Li C, Wang Y, Ying P, Ma W, Li J - Front Plant Sci (2015)

Bottom Line: Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment.The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification.These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University Guangzhou, China ; Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University Guangzhou, China.

ABSTRACT
The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better understanding for the molecular regulatory mechanism of fruit abscission in litchi.

No MeSH data available.


The possible molecular events to control the ethephon-promoted litchi fruitlet abscission based on expression data obtained from DTA analysis. Gene expression levels were indicated with color bars: red (up-regulated) and green (down-regulated).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493771&req=5

Figure 7: The possible molecular events to control the ethephon-promoted litchi fruitlet abscission based on expression data obtained from DTA analysis. Gene expression levels were indicated with color bars: red (up-regulated) and green (down-regulated).

Mentions: This study only focus on the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon. In conclusion, a total of 2730 candidate genes were involved in the process of litchi fruit abscission induced by ethephon treatment. A preliminary molecular regulatory scheme was herein prompted out for litchi fruitlet abscission induced by ethephon based on our results (Figure 7). At the early beginning, the ethylene evolution in fruitlet was greatly increased by ETH treatment, which would suppress the synthesis and polar transport of auxin and trigger abscission signaling. At the same time, FAZ might perceive the abscission signals, and then, 1867 early-responsive genes were up- or down-regulated from 0 to 1 d after ETH treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, TFs, protein ubiquitination, ROS response, calcium signal transduction and etc… Then, a lot of genes related to cell wall degradation, TFs, ethylene, ABA and JA biosynthesis and signaling cascade were up-regulated. At the last, cell separation happened and the fruitlet abscission was enhanced. To the best of our knowledge, this study provides the first global monitoring of gene expression changes occurring in FAZ-enriched pedicel during litchi fruit abscission.


Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi.

Li C, Wang Y, Ying P, Ma W, Li J - Front Plant Sci (2015)

The possible molecular events to control the ethephon-promoted litchi fruitlet abscission based on expression data obtained from DTA analysis. Gene expression levels were indicated with color bars: red (up-regulated) and green (down-regulated).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493771&req=5

Figure 7: The possible molecular events to control the ethephon-promoted litchi fruitlet abscission based on expression data obtained from DTA analysis. Gene expression levels were indicated with color bars: red (up-regulated) and green (down-regulated).
Mentions: This study only focus on the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon. In conclusion, a total of 2730 candidate genes were involved in the process of litchi fruit abscission induced by ethephon treatment. A preliminary molecular regulatory scheme was herein prompted out for litchi fruitlet abscission induced by ethephon based on our results (Figure 7). At the early beginning, the ethylene evolution in fruitlet was greatly increased by ETH treatment, which would suppress the synthesis and polar transport of auxin and trigger abscission signaling. At the same time, FAZ might perceive the abscission signals, and then, 1867 early-responsive genes were up- or down-regulated from 0 to 1 d after ETH treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, TFs, protein ubiquitination, ROS response, calcium signal transduction and etc… Then, a lot of genes related to cell wall degradation, TFs, ethylene, ABA and JA biosynthesis and signaling cascade were up-regulated. At the last, cell separation happened and the fruitlet abscission was enhanced. To the best of our knowledge, this study provides the first global monitoring of gene expression changes occurring in FAZ-enriched pedicel during litchi fruit abscission.

Bottom Line: Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment.The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification.These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University Guangzhou, China ; Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University Guangzhou, China.

ABSTRACT
The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better understanding for the molecular regulatory mechanism of fruit abscission in litchi.

No MeSH data available.