Limits...
Comparative analysis of tissue-specific transcriptomes in the funnel-web spider Macrothele calpeiana (Araneae, Hexathelidae).

Frías-López C, Almeida FC, Guirao-Rico S, Vizueta J, Sánchez-Gracia A, Arnedo MA, Rozas J - PeerJ (2015)

Bottom Line: We have characterized the set of transcripts specifically expressed in putative chemosensory tissues of this species, much of them showing features shared by chemosensory system genes.Moreover, we have demonstrated the utility of these newly generated data as molecular markers by inferring the phylogenetic position M. calpeina in the phylogenetic tree of Mygalomorphs.Our results provide novel resources for researchers interested in spider molecular biology and systematics, which can help to expand our knowledge on the evolutionary processes underlying fundamental biological questions, as species invasion or biodiversity origin and maintenance.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona , Barcelona , Spain ; Departament de Biologia Animal and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona , Barcelona , Spain.

ABSTRACT
The funnel-web spider Macrothele calpeiana is a charismatic Mygalomorph with a great interest in basic, applied and translational research. Nevertheless, current scarcity of genomic and transcriptomic data of this species clearly limits the research in this non-model organism. To overcome this limitation, we launched the first tissue-specific enriched RNA-seq analysis in this species using a subtractive hybridization approach, with two main objectives, to characterize the specific transcriptome of the putative chemosensory appendages (palps and first pair of legs), and to provide a new set of DNA markers for further phylogenetic studies. We have characterized the set of transcripts specifically expressed in putative chemosensory tissues of this species, much of them showing features shared by chemosensory system genes. Among specific candidates, we have identified some members of the iGluR and NPC2 families. Moreover, we have demonstrated the utility of these newly generated data as molecular markers by inferring the phylogenetic position M. calpeina in the phylogenetic tree of Mygalomorphs. Our results provide novel resources for researchers interested in spider molecular biology and systematics, which can help to expand our knowledge on the evolutionary processes underlying fundamental biological questions, as species invasion or biodiversity origin and maintenance.

No MeSH data available.


Related in: MedlinePlus

Macrothele taxonomic distribution.Taxonomic distribution of the 6,696 transcripts with significant blast hits against the NCBI-nr data base (using the top-hit; cut-off E-value of 10−3) by means of the Blast2GO package (4,399 transcripts with blast hit). (A) Distribution of the top-hits across arthropod groups (29.4% of the transcripts with blast hit). (B) Top-hit species distribution.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493671&req=5

fig-1: Macrothele taxonomic distribution.Taxonomic distribution of the 6,696 transcripts with significant blast hits against the NCBI-nr data base (using the top-hit; cut-off E-value of 10−3) by means of the Blast2GO package (4,399 transcripts with blast hit). (A) Distribution of the top-hits across arthropod groups (29.4% of the transcripts with blast hit). (B) Top-hit species distribution.

Mentions: We investigated the quality of our tissue specific transcriptome by a series of similarity-based searches of our transcripts against sequences in the NCBI-nr database. As expected, the single largest category of top blast hits (blastx E-value cut-off 10−3), corresponding to 25.3% of top blast hits, was to chelicerate protein coding genes, followed by hits to other arthropod species (4.1%). Within the Arthropoda, hits within Hexapoda represents about 12% (Fig. 1A), while Ixodes scapularis is the species receiving the majority of hits (Fig. 1B).


Comparative analysis of tissue-specific transcriptomes in the funnel-web spider Macrothele calpeiana (Araneae, Hexathelidae).

Frías-López C, Almeida FC, Guirao-Rico S, Vizueta J, Sánchez-Gracia A, Arnedo MA, Rozas J - PeerJ (2015)

Macrothele taxonomic distribution.Taxonomic distribution of the 6,696 transcripts with significant blast hits against the NCBI-nr data base (using the top-hit; cut-off E-value of 10−3) by means of the Blast2GO package (4,399 transcripts with blast hit). (A) Distribution of the top-hits across arthropod groups (29.4% of the transcripts with blast hit). (B) Top-hit species distribution.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493671&req=5

fig-1: Macrothele taxonomic distribution.Taxonomic distribution of the 6,696 transcripts with significant blast hits against the NCBI-nr data base (using the top-hit; cut-off E-value of 10−3) by means of the Blast2GO package (4,399 transcripts with blast hit). (A) Distribution of the top-hits across arthropod groups (29.4% of the transcripts with blast hit). (B) Top-hit species distribution.
Mentions: We investigated the quality of our tissue specific transcriptome by a series of similarity-based searches of our transcripts against sequences in the NCBI-nr database. As expected, the single largest category of top blast hits (blastx E-value cut-off 10−3), corresponding to 25.3% of top blast hits, was to chelicerate protein coding genes, followed by hits to other arthropod species (4.1%). Within the Arthropoda, hits within Hexapoda represents about 12% (Fig. 1A), while Ixodes scapularis is the species receiving the majority of hits (Fig. 1B).

Bottom Line: We have characterized the set of transcripts specifically expressed in putative chemosensory tissues of this species, much of them showing features shared by chemosensory system genes.Moreover, we have demonstrated the utility of these newly generated data as molecular markers by inferring the phylogenetic position M. calpeina in the phylogenetic tree of Mygalomorphs.Our results provide novel resources for researchers interested in spider molecular biology and systematics, which can help to expand our knowledge on the evolutionary processes underlying fundamental biological questions, as species invasion or biodiversity origin and maintenance.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona , Barcelona , Spain ; Departament de Biologia Animal and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona , Barcelona , Spain.

ABSTRACT
The funnel-web spider Macrothele calpeiana is a charismatic Mygalomorph with a great interest in basic, applied and translational research. Nevertheless, current scarcity of genomic and transcriptomic data of this species clearly limits the research in this non-model organism. To overcome this limitation, we launched the first tissue-specific enriched RNA-seq analysis in this species using a subtractive hybridization approach, with two main objectives, to characterize the specific transcriptome of the putative chemosensory appendages (palps and first pair of legs), and to provide a new set of DNA markers for further phylogenetic studies. We have characterized the set of transcripts specifically expressed in putative chemosensory tissues of this species, much of them showing features shared by chemosensory system genes. Among specific candidates, we have identified some members of the iGluR and NPC2 families. Moreover, we have demonstrated the utility of these newly generated data as molecular markers by inferring the phylogenetic position M. calpeina in the phylogenetic tree of Mygalomorphs. Our results provide novel resources for researchers interested in spider molecular biology and systematics, which can help to expand our knowledge on the evolutionary processes underlying fundamental biological questions, as species invasion or biodiversity origin and maintenance.

No MeSH data available.


Related in: MedlinePlus