Limits...
Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis.

Li M, Liang P, Li Z, Wang Y, Zhang G, Gao H, Wen S, Tang L - Front Microbiol (2015)

Bottom Line: Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability.These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines.The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins.

View Article: PubMed Central - PubMed

Affiliation: Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China ; Key Microecology Laboratory of Liaoning Province Dalian, China.

ABSTRACT
Fecal microbiota transplantation (FMT) is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT) for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR). Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins.

No MeSH data available.


Related in: MedlinePlus

The recovery of intestinal microbiota in different mice groups. (A) PCA of the cecal microbiota in different experimental mice groups during the 3-week recovery. PC1 and PC2 account for 66.66, 59.62, and 51.26% of the variation in different weeks. Each symbol represents one microbiota (dot). White dots, healthy mice; red dots; SR mice, blue dots, FMT mice; green dots, BCT mice. (B) The population of total intestinal microbes in different mice groups detected by qPCR. *p < 0.05; w, week(s) after ceftriaxone treatment.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493656&req=5

Figure 4: The recovery of intestinal microbiota in different mice groups. (A) PCA of the cecal microbiota in different experimental mice groups during the 3-week recovery. PC1 and PC2 account for 66.66, 59.62, and 51.26% of the variation in different weeks. Each symbol represents one microbiota (dot). White dots, healthy mice; red dots; SR mice, blue dots, FMT mice; green dots, BCT mice. (B) The population of total intestinal microbes in different mice groups detected by qPCR. *p < 0.05; w, week(s) after ceftriaxone treatment.

Mentions: The cecal microbiota in transplanted mice was analyzed by DGGE and qPCR, and the results are shown in Figure 4. By the first week (4 days after transplantation), the diversity and population (total numbers) of the microbiota in the FMT and BCT groups was higher than in the SR group, but was still different from the control mice. There was a significant difference in the total number of bacteria between the FMT/BCT groups and the SR group (p = 0.0427 and p = 0.0131, respectively). The abundance of total bacteria in the BCT and FMT groups was much lower in both of these groups than in the control group (p = 0.0322). After 2 weeks of recovery, increasing patterns of microbial diversity were observed in the SR, FMT, and BCT groups, although the total bacterial populations were still lower than the control group (p = 0.0037, p = 0.0050, and p = 0.0265, respectively). Compared with the SR group, the total number of microbes in the FMT/BCT group was larger (p = 0.0230; p = 0.0112). A significant difference was detected between the total number of microbes in the BCT and FMT groups (p = 0.0355). After 3 weeks of recovery, both the diversity and population of different groups were similar to those of the control group, suggesting that total recovery of the intestinal microbial structure had occurred.


Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis.

Li M, Liang P, Li Z, Wang Y, Zhang G, Gao H, Wen S, Tang L - Front Microbiol (2015)

The recovery of intestinal microbiota in different mice groups. (A) PCA of the cecal microbiota in different experimental mice groups during the 3-week recovery. PC1 and PC2 account for 66.66, 59.62, and 51.26% of the variation in different weeks. Each symbol represents one microbiota (dot). White dots, healthy mice; red dots; SR mice, blue dots, FMT mice; green dots, BCT mice. (B) The population of total intestinal microbes in different mice groups detected by qPCR. *p < 0.05; w, week(s) after ceftriaxone treatment.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493656&req=5

Figure 4: The recovery of intestinal microbiota in different mice groups. (A) PCA of the cecal microbiota in different experimental mice groups during the 3-week recovery. PC1 and PC2 account for 66.66, 59.62, and 51.26% of the variation in different weeks. Each symbol represents one microbiota (dot). White dots, healthy mice; red dots; SR mice, blue dots, FMT mice; green dots, BCT mice. (B) The population of total intestinal microbes in different mice groups detected by qPCR. *p < 0.05; w, week(s) after ceftriaxone treatment.
Mentions: The cecal microbiota in transplanted mice was analyzed by DGGE and qPCR, and the results are shown in Figure 4. By the first week (4 days after transplantation), the diversity and population (total numbers) of the microbiota in the FMT and BCT groups was higher than in the SR group, but was still different from the control mice. There was a significant difference in the total number of bacteria between the FMT/BCT groups and the SR group (p = 0.0427 and p = 0.0131, respectively). The abundance of total bacteria in the BCT and FMT groups was much lower in both of these groups than in the control group (p = 0.0322). After 2 weeks of recovery, increasing patterns of microbial diversity were observed in the SR, FMT, and BCT groups, although the total bacterial populations were still lower than the control group (p = 0.0037, p = 0.0050, and p = 0.0265, respectively). Compared with the SR group, the total number of microbes in the FMT/BCT group was larger (p = 0.0230; p = 0.0112). A significant difference was detected between the total number of microbes in the BCT and FMT groups (p = 0.0355). After 3 weeks of recovery, both the diversity and population of different groups were similar to those of the control group, suggesting that total recovery of the intestinal microbial structure had occurred.

Bottom Line: Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability.These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines.The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins.

View Article: PubMed Central - PubMed

Affiliation: Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China ; Key Microecology Laboratory of Liaoning Province Dalian, China.

ABSTRACT
Fecal microbiota transplantation (FMT) is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT) for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR). Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins.

No MeSH data available.


Related in: MedlinePlus