Limits...
Label-free imaging and biochemical characterization of bovine sperm cells.

Ferrara MA, Di Caprio G, Managò S, De Angelis A, Sirleto L, Coppola G, De Luca AC - Biosensors (Basel) (2015)

Bottom Line: A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination.In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS).We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.

View Article: PubMed Central - PubMed

Affiliation: Institute for Microelectronics and Microsystems, National Research Council, Via P. Castellino, 111, 80131 Naples, Italy. antonella.ferrara@na.imm.cnr.it.

ABSTRACT
A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.

Show MeSH

Related in: MedlinePlus

Overview of the single sperm cell analysis technology. Single cells can be analyzed by Digital Holography (DH) or Raman spectroscopy (RS). DH microscopy based on morphological parameters measurement is a fast and label-free technology allowing the reconstruction of 3D maps of single selected cells and measurements of cell volumes/thickness. RS detects biomolecule vibrations from a single cell, which serves as a cellular intrinsic “fingerprint”. It is a sensitive and label-free technology allowing the production of pseudo-color images according to the Raman spectral band intensities and the identification of cell phenotype and physiological state. Both technologies can be applied to analyze sperm cell defects or characterize X- and Y-bearing sperm cells.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493542&req=5

biosensors-05-00141-f002: Overview of the single sperm cell analysis technology. Single cells can be analyzed by Digital Holography (DH) or Raman spectroscopy (RS). DH microscopy based on morphological parameters measurement is a fast and label-free technology allowing the reconstruction of 3D maps of single selected cells and measurements of cell volumes/thickness. RS detects biomolecule vibrations from a single cell, which serves as a cellular intrinsic “fingerprint”. It is a sensitive and label-free technology allowing the production of pseudo-color images according to the Raman spectral band intensities and the identification of cell phenotype and physiological state. Both technologies can be applied to analyze sperm cell defects or characterize X- and Y-bearing sperm cells.

Mentions: In order to focus on the most important parameters measured in a semen analysis, such as the morphology, biochemical alterations and sex-assessment of the sperm, we performed the comparative analysis summarized in Figure 2.


Label-free imaging and biochemical characterization of bovine sperm cells.

Ferrara MA, Di Caprio G, Managò S, De Angelis A, Sirleto L, Coppola G, De Luca AC - Biosensors (Basel) (2015)

Overview of the single sperm cell analysis technology. Single cells can be analyzed by Digital Holography (DH) or Raman spectroscopy (RS). DH microscopy based on morphological parameters measurement is a fast and label-free technology allowing the reconstruction of 3D maps of single selected cells and measurements of cell volumes/thickness. RS detects biomolecule vibrations from a single cell, which serves as a cellular intrinsic “fingerprint”. It is a sensitive and label-free technology allowing the production of pseudo-color images according to the Raman spectral band intensities and the identification of cell phenotype and physiological state. Both technologies can be applied to analyze sperm cell defects or characterize X- and Y-bearing sperm cells.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493542&req=5

biosensors-05-00141-f002: Overview of the single sperm cell analysis technology. Single cells can be analyzed by Digital Holography (DH) or Raman spectroscopy (RS). DH microscopy based on morphological parameters measurement is a fast and label-free technology allowing the reconstruction of 3D maps of single selected cells and measurements of cell volumes/thickness. RS detects biomolecule vibrations from a single cell, which serves as a cellular intrinsic “fingerprint”. It is a sensitive and label-free technology allowing the production of pseudo-color images according to the Raman spectral band intensities and the identification of cell phenotype and physiological state. Both technologies can be applied to analyze sperm cell defects or characterize X- and Y-bearing sperm cells.
Mentions: In order to focus on the most important parameters measured in a semen analysis, such as the morphology, biochemical alterations and sex-assessment of the sperm, we performed the comparative analysis summarized in Figure 2.

Bottom Line: A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination.In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS).We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.

View Article: PubMed Central - PubMed

Affiliation: Institute for Microelectronics and Microsystems, National Research Council, Via P. Castellino, 111, 80131 Naples, Italy. antonella.ferrara@na.imm.cnr.it.

ABSTRACT
A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.

Show MeSH
Related in: MedlinePlus