Limits...
Cell Surface and Membrane Engineering: Emerging Technologies and Applications.

Saeui CT, Mathew MP, Liu L, Urias E, Yarema KJ - J Funct Biomater (2015)

Bottom Line: To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility.This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples.The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

View Article: PubMed Central - PubMed

Affiliation: Translational Tissue Engineering Center (TTEC), Johns Hopkins University, 400 N. Broadway, Baltimore, MD 21287, USA. chris.saeui@gmail.com.

ABSTRACT
Membranes constitute the interface between the basic unit of life-a single cell-and the outside environment and thus in many ways comprise the ultimate "functional biomaterial". To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

No MeSH data available.


Protein insertion into nanolipoprotein particles (NLPs). Two amphipathic α-helical proteins (gray ring) self-assemble with lipids to produce a nano-sized disc. When introduced into a protein expression system, certain membrane proteins spontaneously insert into the NLPs.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493524&req=5

jfb-06-00454-f003: Protein insertion into nanolipoprotein particles (NLPs). Two amphipathic α-helical proteins (gray ring) self-assemble with lipids to produce a nano-sized disc. When introduced into a protein expression system, certain membrane proteins spontaneously insert into the NLPs.

Mentions: Briefly, NLPs can be synthesized by utilizing amphipathic α-helical proteins that can self-assemble into bilayer disc-like structures with lipids, where the edge of the discs are defined by the α-helical proteins that stabilize the leaflets [50,51,52,53,54] (Figure 3). α-Helical proteins can initiate nanodisc formation using detergent dialysis [50] that, when coupled with the titration of a desired lipid at an optimized lipid to protein ratio [46], can spontaneously form homogenous ~10 nm-sized bilayer discs. When cell-free protein expression systems are used to generate a membrane protein of interest, protein-NLP complexes can form in situ [45]. Finally, radiolabel-based ligand assays can be performed after purification to verify by binding or catalytic activity whether the membrane protein properly folded and inserted into the NLPs. Recently, a diverse range of membrane proteins have been produced, incorporated into NLPs, and verified to be in a correctly folding conformation [55,56,57,58,59,60]. The increasing success and robustness of this technique may soon make the expression of membrane proteins in NLPs a common and routine laboratory technique that becomes standard for the general study and exploitation of membrane proteins. As a caveat, many proteins do not spontaneously insert into lipid bilayers and therefore are not immediately amenable for NLP incorporation; however as the basic requirements for protein insertion into membranes become unraveled [61,62,63] it is anticipated that peptide sequences can be rationally designed to widely facilitate NLP production for an increased repertoire of proteins.


Cell Surface and Membrane Engineering: Emerging Technologies and Applications.

Saeui CT, Mathew MP, Liu L, Urias E, Yarema KJ - J Funct Biomater (2015)

Protein insertion into nanolipoprotein particles (NLPs). Two amphipathic α-helical proteins (gray ring) self-assemble with lipids to produce a nano-sized disc. When introduced into a protein expression system, certain membrane proteins spontaneously insert into the NLPs.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493524&req=5

jfb-06-00454-f003: Protein insertion into nanolipoprotein particles (NLPs). Two amphipathic α-helical proteins (gray ring) self-assemble with lipids to produce a nano-sized disc. When introduced into a protein expression system, certain membrane proteins spontaneously insert into the NLPs.
Mentions: Briefly, NLPs can be synthesized by utilizing amphipathic α-helical proteins that can self-assemble into bilayer disc-like structures with lipids, where the edge of the discs are defined by the α-helical proteins that stabilize the leaflets [50,51,52,53,54] (Figure 3). α-Helical proteins can initiate nanodisc formation using detergent dialysis [50] that, when coupled with the titration of a desired lipid at an optimized lipid to protein ratio [46], can spontaneously form homogenous ~10 nm-sized bilayer discs. When cell-free protein expression systems are used to generate a membrane protein of interest, protein-NLP complexes can form in situ [45]. Finally, radiolabel-based ligand assays can be performed after purification to verify by binding or catalytic activity whether the membrane protein properly folded and inserted into the NLPs. Recently, a diverse range of membrane proteins have been produced, incorporated into NLPs, and verified to be in a correctly folding conformation [55,56,57,58,59,60]. The increasing success and robustness of this technique may soon make the expression of membrane proteins in NLPs a common and routine laboratory technique that becomes standard for the general study and exploitation of membrane proteins. As a caveat, many proteins do not spontaneously insert into lipid bilayers and therefore are not immediately amenable for NLP incorporation; however as the basic requirements for protein insertion into membranes become unraveled [61,62,63] it is anticipated that peptide sequences can be rationally designed to widely facilitate NLP production for an increased repertoire of proteins.

Bottom Line: To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility.This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples.The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

View Article: PubMed Central - PubMed

Affiliation: Translational Tissue Engineering Center (TTEC), Johns Hopkins University, 400 N. Broadway, Baltimore, MD 21287, USA. chris.saeui@gmail.com.

ABSTRACT
Membranes constitute the interface between the basic unit of life-a single cell-and the outside environment and thus in many ways comprise the ultimate "functional biomaterial". To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

No MeSH data available.