Limits...
Medical smart textiles based on fiber optic technology: an overview.

Massaroni C, Saccomandi P, Schena E - J Funct Biomater (2015)

Bottom Line: Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing.In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages.Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

View Article: PubMed Central - PubMed

Affiliation: Center for Integrated Research, Università campus Bio-Medico, Alvaro del Portillo, 21, Rome 00128, Italy. c.massaroni@unicampus.it.

ABSTRACT
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

No MeSH data available.


(A) Design of the FBG sensor developed in OFSETH project (adapted from [57]); (B) MRI-compatible sensing harness which embeds the fiber optic sensors for respiratory monitoring (adapted from [57]).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493508&req=5

jfb-06-00204-f004: (A) Design of the FBG sensor developed in OFSETH project (adapted from [57]); (B) MRI-compatible sensing harness which embeds the fiber optic sensors for respiratory monitoring (adapted from [57]).

Mentions: The high FBG sensitivity to strain (i.e., ≈1.2 pm·µε−1) allows discriminating small strains; therefore they have been used to monitor thoracic movements that are smaller than abdominal ones. Two different methods to embed the FBG sensors within textiles (stitching and crochet) have been proposed. The calibration of the system, which embeds the FBG by stitching (see Figure 4A), has been performed by stretching the textiles in steps of 0.4% up to 40%. During the calibration, the FBG experiences strains up to 0.8%. The system shows good linearity from about 8.5% to 35%–40% of textile stretching, with a sensitivity of 0.35 nm/% and an accuracy better than 0.1% of elongation. Only preliminary experiments on the textiles developed with the crochet method have been performed. The integration of this sensor with a different FOS has been assessed on ten healthy volunteers [54]. Trials to evaluate the long-term properties and the stability of the respiratory sensor by an ad hoc developed simulator have been performed as well [55]. In particular the mechanical robustness of the sensor has been tested with more than 90,000 cycles in 129 hours with a simulated breathing rate between 10 breaths per minute and 12 breaths per minute [56]. A further valuable characteristic of the proposed system (see Figure 4B) is that it enables the continuous measurement of respiratory movement providing free access to all vital organs for medical staff actions [57].


Medical smart textiles based on fiber optic technology: an overview.

Massaroni C, Saccomandi P, Schena E - J Funct Biomater (2015)

(A) Design of the FBG sensor developed in OFSETH project (adapted from [57]); (B) MRI-compatible sensing harness which embeds the fiber optic sensors for respiratory monitoring (adapted from [57]).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493508&req=5

jfb-06-00204-f004: (A) Design of the FBG sensor developed in OFSETH project (adapted from [57]); (B) MRI-compatible sensing harness which embeds the fiber optic sensors for respiratory monitoring (adapted from [57]).
Mentions: The high FBG sensitivity to strain (i.e., ≈1.2 pm·µε−1) allows discriminating small strains; therefore they have been used to monitor thoracic movements that are smaller than abdominal ones. Two different methods to embed the FBG sensors within textiles (stitching and crochet) have been proposed. The calibration of the system, which embeds the FBG by stitching (see Figure 4A), has been performed by stretching the textiles in steps of 0.4% up to 40%. During the calibration, the FBG experiences strains up to 0.8%. The system shows good linearity from about 8.5% to 35%–40% of textile stretching, with a sensitivity of 0.35 nm/% and an accuracy better than 0.1% of elongation. Only preliminary experiments on the textiles developed with the crochet method have been performed. The integration of this sensor with a different FOS has been assessed on ten healthy volunteers [54]. Trials to evaluate the long-term properties and the stability of the respiratory sensor by an ad hoc developed simulator have been performed as well [55]. In particular the mechanical robustness of the sensor has been tested with more than 90,000 cycles in 129 hours with a simulated breathing rate between 10 breaths per minute and 12 breaths per minute [56]. A further valuable characteristic of the proposed system (see Figure 4B) is that it enables the continuous measurement of respiratory movement providing free access to all vital organs for medical staff actions [57].

Bottom Line: Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing.In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages.Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

View Article: PubMed Central - PubMed

Affiliation: Center for Integrated Research, Università campus Bio-Medico, Alvaro del Portillo, 21, Rome 00128, Italy. c.massaroni@unicampus.it.

ABSTRACT
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

No MeSH data available.