Limits...
Scavenger receptor structure and function in health and disease.

Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S - Cells (2015)

Bottom Line: These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence.Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens.Here, we review our current understanding of SR structure and function implicated in health and disease.

View Article: PubMed Central - PubMed

Affiliation: Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.

ABSTRACT
Scavenger receptors (SRs) are a 'superfamily' of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL), though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.

No MeSH data available.


Related in: MedlinePlus

Schematic overview of the SR membrane protein supergroup. The different classes are denoted A-J and specific domains are denoted by the codes shown. All SR classes have mammalian orthologues except Class C (dSR-C1) which can only be found in insects.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493455&req=5

cells-04-00178-f001: Schematic overview of the SR membrane protein supergroup. The different classes are denoted A-J and specific domains are denoted by the codes shown. All SR classes have mammalian orthologues except Class C (dSR-C1) which can only be found in insects.

Mentions: Ground-breaking studies that led to the identification of scavenger receptor (SR) in macrophages were first described by Brown and Goldstein in the 1970s. It was found that modified oxidized low-density lipoprotein gets internalized and degraded, but not native LDL. SRs comprise a diverse array of integral membrane proteins and soluble secreted extracellular domain isoforms. We have termed these proteins as belonging to the ‘SR supergroup’ (Figure 1), as opposed to a superfamily, as this latter term implies primary sequence similarity shared across the whole supergroup. A key point is that SR members within each class bear primary sequence similarity but different classes bear little or no primary sequence similarity. The common feature uniting this disparate group of proteins within the SR supergroup is their ability to recognize common ligands such as polyionic ligands including lipoproteins, apoptotic cells, cholesterol ester, phospholipids, proteoglycans, ferritin, and carbohydrates. SRs were initially identified on basis of their biochemical ability to recognize and bind different modified forms of LDL e.g. oxidized LDL (OxLDL), and such interactions can promote macrophage differentiation into foam cells leading to chronic conditions such as atherosclerosis. The term and classification for scavenger receptors used in this context is standardized according to the recent review by Prabhudas et al. [1]. Based on our current understanding of SR structure and biological function, we have grouped these proteins into Classes A-J (Figure 1) [2].


Scavenger receptor structure and function in health and disease.

Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S - Cells (2015)

Schematic overview of the SR membrane protein supergroup. The different classes are denoted A-J and specific domains are denoted by the codes shown. All SR classes have mammalian orthologues except Class C (dSR-C1) which can only be found in insects.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493455&req=5

cells-04-00178-f001: Schematic overview of the SR membrane protein supergroup. The different classes are denoted A-J and specific domains are denoted by the codes shown. All SR classes have mammalian orthologues except Class C (dSR-C1) which can only be found in insects.
Mentions: Ground-breaking studies that led to the identification of scavenger receptor (SR) in macrophages were first described by Brown and Goldstein in the 1970s. It was found that modified oxidized low-density lipoprotein gets internalized and degraded, but not native LDL. SRs comprise a diverse array of integral membrane proteins and soluble secreted extracellular domain isoforms. We have termed these proteins as belonging to the ‘SR supergroup’ (Figure 1), as opposed to a superfamily, as this latter term implies primary sequence similarity shared across the whole supergroup. A key point is that SR members within each class bear primary sequence similarity but different classes bear little or no primary sequence similarity. The common feature uniting this disparate group of proteins within the SR supergroup is their ability to recognize common ligands such as polyionic ligands including lipoproteins, apoptotic cells, cholesterol ester, phospholipids, proteoglycans, ferritin, and carbohydrates. SRs were initially identified on basis of their biochemical ability to recognize and bind different modified forms of LDL e.g. oxidized LDL (OxLDL), and such interactions can promote macrophage differentiation into foam cells leading to chronic conditions such as atherosclerosis. The term and classification for scavenger receptors used in this context is standardized according to the recent review by Prabhudas et al. [1]. Based on our current understanding of SR structure and biological function, we have grouped these proteins into Classes A-J (Figure 1) [2].

Bottom Line: These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence.Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens.Here, we review our current understanding of SR structure and function implicated in health and disease.

View Article: PubMed Central - PubMed

Affiliation: Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.

ABSTRACT
Scavenger receptors (SRs) are a 'superfamily' of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL), though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.

No MeSH data available.


Related in: MedlinePlus