Limits...
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.

Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K - J. Exp. Med. (2015)

Bottom Line: Surprisingly, brain ISF pressure and water content were unaffected.Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain.Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease.

View Article: PubMed Central - HTML - PubMed

Affiliation: Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland.

Show MeSH

Related in: MedlinePlus

Lack of dural lymphatic vessels compromises CNS macromolecule clearance. Analysis of A488-OVA distribution 2 h after intraparenchymal injection in K14-VEGFR3-Ig TG mice and WT littermate controls. (A and B) Representative false color maps and quantification of the epifluorescence efficiency in the brain using IVIS imaging. (C and D) Representative images and quantification of the fluorescence in the dcLNs (indicated by arrows). (E and F) Representative fluorescent images of the A488-OVA tracer (indicated by arrowheads) accumulation in the LYVE1-stained lymphatic vessels around the PPA and MMA, with quantification of the A488-OVA–positive signal. Note the partial leakage of the tracer from the vessels caused by the perfusion fixation. (G) Fluorescent images of brain sections stained with DAPI and antibodies against endomucin (EMCN), showing the A488-OVA tracer distribution in the glymphatic system. (H) Plot profile analysis of the fluorescence along the indicated lines in G, showing A488-OVA signal in the subendothelial and perivascular spaces (arrows) in both TG and WT mice. (I) Immunofluorescent images of dcLNs stained with DAPI and antibodies against LYVE1. (J) Quantification of the LYVE1+ area in the dcLNs in TG mice and WT littermate controls. (A, B, and G–J) n = 4 (TG) and 3 (WT). (C–F) n = 3 (TG) and 4 (WT). Data are representative of two independent experiments. Bars: (C) 2 mm; (E) 100 µm; (G) 8 µm; (I) 1,000 µm. Error bars indicate SD. Statistical analysis: two-tailed Student’s t test. **, P < 0.01; ***, P < 0.001.
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4493418&req=5

fig4: Lack of dural lymphatic vessels compromises CNS macromolecule clearance. Analysis of A488-OVA distribution 2 h after intraparenchymal injection in K14-VEGFR3-Ig TG mice and WT littermate controls. (A and B) Representative false color maps and quantification of the epifluorescence efficiency in the brain using IVIS imaging. (C and D) Representative images and quantification of the fluorescence in the dcLNs (indicated by arrows). (E and F) Representative fluorescent images of the A488-OVA tracer (indicated by arrowheads) accumulation in the LYVE1-stained lymphatic vessels around the PPA and MMA, with quantification of the A488-OVA–positive signal. Note the partial leakage of the tracer from the vessels caused by the perfusion fixation. (G) Fluorescent images of brain sections stained with DAPI and antibodies against endomucin (EMCN), showing the A488-OVA tracer distribution in the glymphatic system. (H) Plot profile analysis of the fluorescence along the indicated lines in G, showing A488-OVA signal in the subendothelial and perivascular spaces (arrows) in both TG and WT mice. (I) Immunofluorescent images of dcLNs stained with DAPI and antibodies against LYVE1. (J) Quantification of the LYVE1+ area in the dcLNs in TG mice and WT littermate controls. (A, B, and G–J) n = 4 (TG) and 3 (WT). (C–F) n = 3 (TG) and 4 (WT). Data are representative of two independent experiments. Bars: (C) 2 mm; (E) 100 µm; (G) 8 µm; (I) 1,000 µm. Error bars indicate SD. Statistical analysis: two-tailed Student’s t test. **, P < 0.01; ***, P < 0.001.

Mentions: VEGF-C/D signaling via VEGFR3 is a critical regulator of lymphangiogenesis (Secker and Harvey, 2015). To (a) study whether dura mater lymphatic vessels are regulated by VEGFC/D–VEGFR3 signaling and (b) characterize an animal model in which the functional consequences of dura mater lymphatic vessel aplasia can be examined, we investigated the K14-VEGFR3-Ig transgenic (TG) mouse, which has impaired VEGF-C/D–VEGFR3 signaling. These mice express a soluble VEGF-C/D trap protein consisting of the ligand-binding Ig homology domains 1–3 of VEGFR3 fused with the Fc domain of Igγ (Mäkinen et al., 2001). Although the VEGF-C/D trap transgene is expressed in keratinocytes, the circulating protein inhibits lymphangiogenesis in most tissues, and the mice display LN hypoplasia (Mäkinen et al., 2001; Alitalo et al., 2013). Lymphatic vessels were absent from both superior and basal parts of the skull in the TG mice compared with WT littermate mice (Fig. 3, A–F). Surprisingly, the mice displayed absence of only the scLNs but not dcLNs (Fig. 3, G–I; and Fig. 4 C). These data indicate that the dura mater lymphatic vessels are very sensitive to the inhibition of VEGF-C/D signaling and that the K14-VEGFR3-Ig TG mouse is a suitable model for studying the functional consequences of the absence of lymphatic drainage from the brain.


A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.

Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K - J. Exp. Med. (2015)

Lack of dural lymphatic vessels compromises CNS macromolecule clearance. Analysis of A488-OVA distribution 2 h after intraparenchymal injection in K14-VEGFR3-Ig TG mice and WT littermate controls. (A and B) Representative false color maps and quantification of the epifluorescence efficiency in the brain using IVIS imaging. (C and D) Representative images and quantification of the fluorescence in the dcLNs (indicated by arrows). (E and F) Representative fluorescent images of the A488-OVA tracer (indicated by arrowheads) accumulation in the LYVE1-stained lymphatic vessels around the PPA and MMA, with quantification of the A488-OVA–positive signal. Note the partial leakage of the tracer from the vessels caused by the perfusion fixation. (G) Fluorescent images of brain sections stained with DAPI and antibodies against endomucin (EMCN), showing the A488-OVA tracer distribution in the glymphatic system. (H) Plot profile analysis of the fluorescence along the indicated lines in G, showing A488-OVA signal in the subendothelial and perivascular spaces (arrows) in both TG and WT mice. (I) Immunofluorescent images of dcLNs stained with DAPI and antibodies against LYVE1. (J) Quantification of the LYVE1+ area in the dcLNs in TG mice and WT littermate controls. (A, B, and G–J) n = 4 (TG) and 3 (WT). (C–F) n = 3 (TG) and 4 (WT). Data are representative of two independent experiments. Bars: (C) 2 mm; (E) 100 µm; (G) 8 µm; (I) 1,000 µm. Error bars indicate SD. Statistical analysis: two-tailed Student’s t test. **, P < 0.01; ***, P < 0.001.
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4493418&req=5

fig4: Lack of dural lymphatic vessels compromises CNS macromolecule clearance. Analysis of A488-OVA distribution 2 h after intraparenchymal injection in K14-VEGFR3-Ig TG mice and WT littermate controls. (A and B) Representative false color maps and quantification of the epifluorescence efficiency in the brain using IVIS imaging. (C and D) Representative images and quantification of the fluorescence in the dcLNs (indicated by arrows). (E and F) Representative fluorescent images of the A488-OVA tracer (indicated by arrowheads) accumulation in the LYVE1-stained lymphatic vessels around the PPA and MMA, with quantification of the A488-OVA–positive signal. Note the partial leakage of the tracer from the vessels caused by the perfusion fixation. (G) Fluorescent images of brain sections stained with DAPI and antibodies against endomucin (EMCN), showing the A488-OVA tracer distribution in the glymphatic system. (H) Plot profile analysis of the fluorescence along the indicated lines in G, showing A488-OVA signal in the subendothelial and perivascular spaces (arrows) in both TG and WT mice. (I) Immunofluorescent images of dcLNs stained with DAPI and antibodies against LYVE1. (J) Quantification of the LYVE1+ area in the dcLNs in TG mice and WT littermate controls. (A, B, and G–J) n = 4 (TG) and 3 (WT). (C–F) n = 3 (TG) and 4 (WT). Data are representative of two independent experiments. Bars: (C) 2 mm; (E) 100 µm; (G) 8 µm; (I) 1,000 µm. Error bars indicate SD. Statistical analysis: two-tailed Student’s t test. **, P < 0.01; ***, P < 0.001.
Mentions: VEGF-C/D signaling via VEGFR3 is a critical regulator of lymphangiogenesis (Secker and Harvey, 2015). To (a) study whether dura mater lymphatic vessels are regulated by VEGFC/D–VEGFR3 signaling and (b) characterize an animal model in which the functional consequences of dura mater lymphatic vessel aplasia can be examined, we investigated the K14-VEGFR3-Ig transgenic (TG) mouse, which has impaired VEGF-C/D–VEGFR3 signaling. These mice express a soluble VEGF-C/D trap protein consisting of the ligand-binding Ig homology domains 1–3 of VEGFR3 fused with the Fc domain of Igγ (Mäkinen et al., 2001). Although the VEGF-C/D trap transgene is expressed in keratinocytes, the circulating protein inhibits lymphangiogenesis in most tissues, and the mice display LN hypoplasia (Mäkinen et al., 2001; Alitalo et al., 2013). Lymphatic vessels were absent from both superior and basal parts of the skull in the TG mice compared with WT littermate mice (Fig. 3, A–F). Surprisingly, the mice displayed absence of only the scLNs but not dcLNs (Fig. 3, G–I; and Fig. 4 C). These data indicate that the dura mater lymphatic vessels are very sensitive to the inhibition of VEGF-C/D signaling and that the K14-VEGFR3-Ig TG mouse is a suitable model for studying the functional consequences of the absence of lymphatic drainage from the brain.

Bottom Line: Surprisingly, brain ISF pressure and water content were unaffected.Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain.Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease.

View Article: PubMed Central - HTML - PubMed

Affiliation: Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland.

Show MeSH
Related in: MedlinePlus