Limits...
VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus

Expression of anthocyanin biosynthetic genes in foliage infiltrated with different vectors. CK, non-infiltrated control leaf; NC, negative control leaf (PTRV2:00); SP, CaMYB-silenced plants. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493389&req=5

Figure 7: Expression of anthocyanin biosynthetic genes in foliage infiltrated with different vectors. CK, non-infiltrated control leaf; NC, negative control leaf (PTRV2:00); SP, CaMYB-silenced plants. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.

Mentions: Real-time quantitative PCR was carried out to examine the transcription of anthocyanin biosynthetic genes in leaves of CK, NC and CaMYB-silenced plants (Figure 7). The expression of MYC was significantly lower in CaMYB-silenced leaves than in CK and NC. In contrast, WD40 showed higher expression in CaMYB-silenced leaves than in CK and NC. The transcription of nine structural genes including CHS, CHI, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage, while PAL, C4H, and 4CL maintained stable and even higher expression in silenced foliage.


VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Expression of anthocyanin biosynthetic genes in foliage infiltrated with different vectors. CK, non-infiltrated control leaf; NC, negative control leaf (PTRV2:00); SP, CaMYB-silenced plants. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493389&req=5

Figure 7: Expression of anthocyanin biosynthetic genes in foliage infiltrated with different vectors. CK, non-infiltrated control leaf; NC, negative control leaf (PTRV2:00); SP, CaMYB-silenced plants. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
Mentions: Real-time quantitative PCR was carried out to examine the transcription of anthocyanin biosynthetic genes in leaves of CK, NC and CaMYB-silenced plants (Figure 7). The expression of MYC was significantly lower in CaMYB-silenced leaves than in CK and NC. In contrast, WD40 showed higher expression in CaMYB-silenced leaves than in CK and NC. The transcription of nine structural genes including CHS, CHI, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage, while PAL, C4H, and 4CL maintained stable and even higher expression in silenced foliage.

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus