Limits...
VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus

Variation of anthocyanin accumulation in leaves infiltrated with different vectors. (A) Leaves were detached from: a: non-infiltrated control (CK); b: NC plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2: CaMYB); d: PDS-silenced plant (PTRV2: PDS). (B) Extracted solutions from the corresponding four samplings. (C) Anthocyanin content of the four samplings by High-performance liquid chromatography (HPLC). Means ± SD (n = 3).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493389&req=5

Figure 6: Variation of anthocyanin accumulation in leaves infiltrated with different vectors. (A) Leaves were detached from: a: non-infiltrated control (CK); b: NC plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2: CaMYB); d: PDS-silenced plant (PTRV2: PDS). (B) Extracted solutions from the corresponding four samplings. (C) Anthocyanin content of the four samplings by High-performance liquid chromatography (HPLC). Means ± SD (n = 3).

Mentions: Anthocyanin from leaves of CK, NC plants, CaMYB-silenced plants and CaPDS-silenced plant were extracted and measured by HPLC (Figure 6). The color intensity of the extracted solutions was different among four samplings (Figure 6B). CaMYB-silenced foliage with a green phenotype accumulated far less anthocyanin; a 31- and 37-fold increase of anthocyanin accumulation was detected in NC and in CK, respectively, compared to that in CaMYB-silenced leaves (Figure 6C).


VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Variation of anthocyanin accumulation in leaves infiltrated with different vectors. (A) Leaves were detached from: a: non-infiltrated control (CK); b: NC plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2: CaMYB); d: PDS-silenced plant (PTRV2: PDS). (B) Extracted solutions from the corresponding four samplings. (C) Anthocyanin content of the four samplings by High-performance liquid chromatography (HPLC). Means ± SD (n = 3).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493389&req=5

Figure 6: Variation of anthocyanin accumulation in leaves infiltrated with different vectors. (A) Leaves were detached from: a: non-infiltrated control (CK); b: NC plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2: CaMYB); d: PDS-silenced plant (PTRV2: PDS). (B) Extracted solutions from the corresponding four samplings. (C) Anthocyanin content of the four samplings by High-performance liquid chromatography (HPLC). Means ± SD (n = 3).
Mentions: Anthocyanin from leaves of CK, NC plants, CaMYB-silenced plants and CaPDS-silenced plant were extracted and measured by HPLC (Figure 6). The color intensity of the extracted solutions was different among four samplings (Figure 6B). CaMYB-silenced foliage with a green phenotype accumulated far less anthocyanin; a 31- and 37-fold increase of anthocyanin accumulation was detected in NC and in CK, respectively, compared to that in CaMYB-silenced leaves (Figure 6C).

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus