Limits...
VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus

Silencing efficiency of CaMYB in pepper plants using a tobacco rattle virus (TRV)-based Virus-induced gene silencing (VIGS) system. (A) Phenotypes of pepper plants 21 days after infiltration of different vectors. a: non-infiltrated control (CK); b: negative control (NC) plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2:CaMYB); d: PDS-silenced plant (PTRV2:PDS). (B) Quantitative real time-PCR analysis of CaMYB expression levels in leaves of CK, NC plants and CaMYB-silenced plants. Ten silencing plants were analyzed (numbered 1–10). Error bars represent mean ± SD for three technical replicates for each plant. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493389&req=5

Figure 5: Silencing efficiency of CaMYB in pepper plants using a tobacco rattle virus (TRV)-based Virus-induced gene silencing (VIGS) system. (A) Phenotypes of pepper plants 21 days after infiltration of different vectors. a: non-infiltrated control (CK); b: negative control (NC) plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2:CaMYB); d: PDS-silenced plant (PTRV2:PDS). (B) Quantitative real time-PCR analysis of CaMYB expression levels in leaves of CK, NC plants and CaMYB-silenced plants. Ten silencing plants were analyzed (numbered 1–10). Error bars represent mean ± SD for three technical replicates for each plant. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.

Mentions: As an indication of successful silencing, CaPDS-silenced plants showed photo bleaching (Figure 5A). Z1 leaves infiltrated with pTRV2: 00 (NC) appeared to be less purple colored compared with non-infiltrated Z1 leaves (CK). Z1 leaves infiltrated with pTRV2: CaMYB exhibited green coloration, and CaMYB abundance was significantly decreased in CaMYB-silenced plants compared to the NC (Figure 5B).


VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Silencing efficiency of CaMYB in pepper plants using a tobacco rattle virus (TRV)-based Virus-induced gene silencing (VIGS) system. (A) Phenotypes of pepper plants 21 days after infiltration of different vectors. a: non-infiltrated control (CK); b: negative control (NC) plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2:CaMYB); d: PDS-silenced plant (PTRV2:PDS). (B) Quantitative real time-PCR analysis of CaMYB expression levels in leaves of CK, NC plants and CaMYB-silenced plants. Ten silencing plants were analyzed (numbered 1–10). Error bars represent mean ± SD for three technical replicates for each plant. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493389&req=5

Figure 5: Silencing efficiency of CaMYB in pepper plants using a tobacco rattle virus (TRV)-based Virus-induced gene silencing (VIGS) system. (A) Phenotypes of pepper plants 21 days after infiltration of different vectors. a: non-infiltrated control (CK); b: negative control (NC) plants (PTRV2:00); c: CaMYB-silenced plant (PTRV2:CaMYB); d: PDS-silenced plant (PTRV2:PDS). (B) Quantitative real time-PCR analysis of CaMYB expression levels in leaves of CK, NC plants and CaMYB-silenced plants. Ten silencing plants were analyzed (numbered 1–10). Error bars represent mean ± SD for three technical replicates for each plant. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
Mentions: As an indication of successful silencing, CaPDS-silenced plants showed photo bleaching (Figure 5A). Z1 leaves infiltrated with pTRV2: 00 (NC) appeared to be less purple colored compared with non-infiltrated Z1 leaves (CK). Z1 leaves infiltrated with pTRV2: CaMYB exhibited green coloration, and CaMYB abundance was significantly decreased in CaMYB-silenced plants compared to the NC (Figure 5B).

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus