Limits...
VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus

Anthocyanin biosynthesis and regulatory genes expression in foliage of line A3 and Z1. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493389&req=5

Figure 4: Anthocyanin biosynthesis and regulatory genes expression in foliage of line A3 and Z1. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.

Mentions: The expression of genes involved in the anthocyanin biosynthetic pathway was monitored in leaves of pepper line A3 (non-anthocyanin pigmented) and Z1 (anthocyanin pigmented; Figure 4). These genes included phenylpropanold pathway genes (PAL, C4H, 4CL), flavonoid pathway genes (CHS, CHI, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST) and regulatory genes (CaMYB, MYC, and WD40). The transcription level of CaMYB was undetectable in A3, but maintained a high level in Z1. The expression of MYC was extremely low in A3 as opposed to Z1. On the contrary, the expression of WD40 was lower in Z1 than in A3. Structural genes could be classified into three groups on the basis of expression pattern. Nine genes including PAL, C4H, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST showed higher expression in Z1 than in A3, whereas CHI showed higher expression in A3 than in Z1. The transcript level of 4CL and CHS was similar between A3 and Z1.


VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Anthocyanin biosynthesis and regulatory genes expression in foliage of line A3 and Z1. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493389&req=5

Figure 4: Anthocyanin biosynthesis and regulatory genes expression in foliage of line A3 and Z1. Error bars represent the mean ± SD of three independent biological replicates. Bars with different lower case letters in each group indicate significant differences using Duncan’s multiple range test at p < 0.05.
Mentions: The expression of genes involved in the anthocyanin biosynthetic pathway was monitored in leaves of pepper line A3 (non-anthocyanin pigmented) and Z1 (anthocyanin pigmented; Figure 4). These genes included phenylpropanold pathway genes (PAL, C4H, 4CL), flavonoid pathway genes (CHS, CHI, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST) and regulatory genes (CaMYB, MYC, and WD40). The transcription level of CaMYB was undetectable in A3, but maintained a high level in Z1. The expression of MYC was extremely low in A3 as opposed to Z1. On the contrary, the expression of WD40 was lower in Z1 than in A3. Structural genes could be classified into three groups on the basis of expression pattern. Nine genes including PAL, C4H, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST showed higher expression in Z1 than in A3, whereas CHI showed higher expression in A3 than in Z1. The transcript level of 4CL and CHS was similar between A3 and Z1.

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Related in: MedlinePlus