Limits...
VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Phylogenetic analysis of CaMYB and other MYBs. Protein sequences used for alignment are as follow: SmMYB2, KF727477; PhAN2, EF423868.1; PHZ, HQ116170; NtAn2, FJ472647; AtMYB113, NM_105308; AtMYB114, NM_105309; AtPAP1, NM_104541; AtPAP2, NM_105310; ZmC1, P10290.1. Ca, Capsicum annuum L; Sm, Solanum melongena; Ph, Petunia hybrid; Nt, Nicotiana tabacum; At, Arabidopsis thaliana; Zm, Zea mays.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493389&req=5

Figure 3: Phylogenetic analysis of CaMYB and other MYBs. Protein sequences used for alignment are as follow: SmMYB2, KF727477; PhAN2, EF423868.1; PHZ, HQ116170; NtAn2, FJ472647; AtMYB113, NM_105308; AtMYB114, NM_105309; AtPAP1, NM_104541; AtPAP2, NM_105310; ZmC1, P10290.1. Ca, Capsicum annuum L; Sm, Solanum melongena; Ph, Petunia hybrid; Nt, Nicotiana tabacum; At, Arabidopsis thaliana; Zm, Zea mays.

Mentions: CaMYB is clustered with the R2R3 MYB transcription factors that are involved in the regulation of anthocyanin biosynthesis in other plant species, such as Arabidopsis, maize, petunia, tobacco, and eggplant (Figure 3). CaMYB is closely related to the subgroup 6 MYBs in Arabidopsis (Dubos et al., 2010), and the nearest MYB is SmMYB2 in eggplant which belongs to the Solanaceae. In pepper genome, there are six genes showing high similarity to CaMYB, and the similarity is heterogeneous ranging from 49 to 67% at the protein level.


VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Phylogenetic analysis of CaMYB and other MYBs. Protein sequences used for alignment are as follow: SmMYB2, KF727477; PhAN2, EF423868.1; PHZ, HQ116170; NtAn2, FJ472647; AtMYB113, NM_105308; AtMYB114, NM_105309; AtPAP1, NM_104541; AtPAP2, NM_105310; ZmC1, P10290.1. Ca, Capsicum annuum L; Sm, Solanum melongena; Ph, Petunia hybrid; Nt, Nicotiana tabacum; At, Arabidopsis thaliana; Zm, Zea mays.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493389&req=5

Figure 3: Phylogenetic analysis of CaMYB and other MYBs. Protein sequences used for alignment are as follow: SmMYB2, KF727477; PhAN2, EF423868.1; PHZ, HQ116170; NtAn2, FJ472647; AtMYB113, NM_105308; AtMYB114, NM_105309; AtPAP1, NM_104541; AtPAP2, NM_105310; ZmC1, P10290.1. Ca, Capsicum annuum L; Sm, Solanum melongena; Ph, Petunia hybrid; Nt, Nicotiana tabacum; At, Arabidopsis thaliana; Zm, Zea mays.
Mentions: CaMYB is clustered with the R2R3 MYB transcription factors that are involved in the regulation of anthocyanin biosynthesis in other plant species, such as Arabidopsis, maize, petunia, tobacco, and eggplant (Figure 3). CaMYB is closely related to the subgroup 6 MYBs in Arabidopsis (Dubos et al., 2010), and the nearest MYB is SmMYB2 in eggplant which belongs to the Solanaceae. In pepper genome, there are six genes showing high similarity to CaMYB, and the similarity is heterogeneous ranging from 49 to 67% at the protein level.

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.