Limits...
VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.


Anthocyanin biosynthesis pathway in pepper. Enzymes encoded by flavonoid early structural genes (EBGs) are underlined, and those boxed are encoded by flavonoid late structural genes (LBGs).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493389&req=5

Figure 1: Anthocyanin biosynthesis pathway in pepper. Enzymes encoded by flavonoid early structural genes (EBGs) are underlined, and those boxed are encoded by flavonoid late structural genes (LBGs).

Mentions: Flavonoids are secondary plant metabolites that fulfill numerous physiological functions such as pigmentation, health-promoting components, and protection against damage by ultraviolet light and phytopathogens (Lepiniec et al., 2006; Davies et al., 2012). Anthocyanins are soluble flavonoids pigments and its biosynthetic pathway has been elucidated. The enzymes involved in the pathway include phenylalanine ammonia-layse (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate: CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonols 4-reductase (DFR), anthocyanin synthase (ANS), and UDP-glucose: flavonoid 3-glucosyltransferase (UFGT) (Aza-González et al., 2013; Figure 1). Also, an anthocyanin permease (ANP) and a glutathione S-transferase (GST) have been suggested to participate in sequestration of anthocyanin in the vacuole (Mathews et al., 2003).


VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH - Front Plant Sci (2015)

Anthocyanin biosynthesis pathway in pepper. Enzymes encoded by flavonoid early structural genes (EBGs) are underlined, and those boxed are encoded by flavonoid late structural genes (LBGs).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493389&req=5

Figure 1: Anthocyanin biosynthesis pathway in pepper. Enzymes encoded by flavonoid early structural genes (EBGs) are underlined, and those boxed are encoded by flavonoid late structural genes (LBGs).
Mentions: Flavonoids are secondary plant metabolites that fulfill numerous physiological functions such as pigmentation, health-promoting components, and protection against damage by ultraviolet light and phytopathogens (Lepiniec et al., 2006; Davies et al., 2012). Anthocyanins are soluble flavonoids pigments and its biosynthetic pathway has been elucidated. The enzymes involved in the pathway include phenylalanine ammonia-layse (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate: CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonols 4-reductase (DFR), anthocyanin synthase (ANS), and UDP-glucose: flavonoid 3-glucosyltransferase (UFGT) (Aza-González et al., 2013; Figure 1). Also, an anthocyanin permease (ANP) and a glutathione S-transferase (GST) have been suggested to participate in sequestration of anthocyanin in the vacuole (Mathews et al., 2003).

Bottom Line: Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation.The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern.These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes.

View Article: PubMed Central - PubMed

Affiliation: College of Horticulture, Northwest A&F University Yangling, China.

ABSTRACT
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

No MeSH data available.