Limits...
Tunnel junction based memristors as artificial synapses.

Thomas A, Niehörster S, Fabretti S, Shepheard N, Kuschel O, Küpper K, Wollschläger J, Krzysteczko P, Chicca E - Front Neurosci (2015)

Bottom Line: The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use.Here, we increased the amplitude of the resistance change from 10% up to 100%.Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses.

View Article: PubMed Central - PubMed

Affiliation: Thin Films and Physics of Nanostructures, Bielefeld University Bielefeld, Germany ; IFW Dresden, Institute for Metallic Materials Dresden, Germany.

ABSTRACT
We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms.

No MeSH data available.


Related in: MedlinePlus

Memristive switching of Pd-TaO-Ta tunnel junction. The barrier was oxidized for 150 s leading to the largest ratio between the high and low resistance states.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493388&req=5

Figure 6: Memristive switching of Pd-TaO-Ta tunnel junction. The barrier was oxidized for 150 s leading to the largest ratio between the high and low resistance states.

Mentions: The samples with oxidation times of 150 s and 200 s reached the highest ratio between the lowest and highest resistance states. Figure 6 shows an I-V-loop of a junction oxidized for 150 s, we observed values of up to 80% in the depicted junction. We swept the voltage from zero to −600 to 600 mV and back to zero. Voltages of more than 600 mV led to a dielectric breakdown of the junctions (Thomas et al., 2008; Schaefers et al., 2009). All measurements are done with the bottom electrode as the reference potential.


Tunnel junction based memristors as artificial synapses.

Thomas A, Niehörster S, Fabretti S, Shepheard N, Kuschel O, Küpper K, Wollschläger J, Krzysteczko P, Chicca E - Front Neurosci (2015)

Memristive switching of Pd-TaO-Ta tunnel junction. The barrier was oxidized for 150 s leading to the largest ratio between the high and low resistance states.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493388&req=5

Figure 6: Memristive switching of Pd-TaO-Ta tunnel junction. The barrier was oxidized for 150 s leading to the largest ratio between the high and low resistance states.
Mentions: The samples with oxidation times of 150 s and 200 s reached the highest ratio between the lowest and highest resistance states. Figure 6 shows an I-V-loop of a junction oxidized for 150 s, we observed values of up to 80% in the depicted junction. We swept the voltage from zero to −600 to 600 mV and back to zero. Voltages of more than 600 mV led to a dielectric breakdown of the junctions (Thomas et al., 2008; Schaefers et al., 2009). All measurements are done with the bottom electrode as the reference potential.

Bottom Line: The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use.Here, we increased the amplitude of the resistance change from 10% up to 100%.Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses.

View Article: PubMed Central - PubMed

Affiliation: Thin Films and Physics of Nanostructures, Bielefeld University Bielefeld, Germany ; IFW Dresden, Institute for Metallic Materials Dresden, Germany.

ABSTRACT
We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms.

No MeSH data available.


Related in: MedlinePlus