Limits...
Modeling Honey Bee Populations.

Torres DJ, Ricoy UM, Roybal S - PLoS ONE (2015)

Bottom Line: Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes.Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al.We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

View Article: PubMed Central - PubMed

Affiliation: Department of Mathematics and Physical Science, Northern New Mexico College, Espanola, NM, USA.

ABSTRACT
Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

No MeSH data available.


Related in: MedlinePlus

Effect of cannibalism on bee population.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493160&req=5

pone.0130966.g005: Effect of cannibalism on bee population.

Mentions: Fig 5 demonstrates the effect of cannibalism in the model which uses the ethyl oleate pheromone. All previous steady state simulations did not incorporate cannibalism. In the first condition (black circles and line), cannibalism is excluded from the model. In the second condition (green triangles), larvae are cannibalized in the absence of sufficient food to make the colony self-sustaining. The nutritional value of a larvae is assigned to be equal to an average experimental weight (50 mg) times one-half. The number of cannibalized larvae is computed to offset any food deficit. Our model shows that cannibalism precipitates the rapid collapse of the colony. Any food benefit gained from the cannibalized larvae is offset by the eventual lack of hive bees to care for larvae and the shortage of foragers to bring in food. Perhaps the evolutionary advantage of cannibalism is limited to short transient intervals which can only be captured in a transient model. See Section 3.1.5.


Modeling Honey Bee Populations.

Torres DJ, Ricoy UM, Roybal S - PLoS ONE (2015)

Effect of cannibalism on bee population.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493160&req=5

pone.0130966.g005: Effect of cannibalism on bee population.
Mentions: Fig 5 demonstrates the effect of cannibalism in the model which uses the ethyl oleate pheromone. All previous steady state simulations did not incorporate cannibalism. In the first condition (black circles and line), cannibalism is excluded from the model. In the second condition (green triangles), larvae are cannibalized in the absence of sufficient food to make the colony self-sustaining. The nutritional value of a larvae is assigned to be equal to an average experimental weight (50 mg) times one-half. The number of cannibalized larvae is computed to offset any food deficit. Our model shows that cannibalism precipitates the rapid collapse of the colony. Any food benefit gained from the cannibalized larvae is offset by the eventual lack of hive bees to care for larvae and the shortage of foragers to bring in food. Perhaps the evolutionary advantage of cannibalism is limited to short transient intervals which can only be captured in a transient model. See Section 3.1.5.

Bottom Line: Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes.Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al.We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

View Article: PubMed Central - PubMed

Affiliation: Department of Mathematics and Physical Science, Northern New Mexico College, Espanola, NM, USA.

ABSTRACT
Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

No MeSH data available.


Related in: MedlinePlus