Limits...
Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy.

Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB - PLoS ONE (2015)

Bottom Line: In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation.Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs.In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America.

ABSTRACT
IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA)-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g.) exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs), and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

No MeSH data available.


Related in: MedlinePlus

Curcumin exposure during sensitization only results in modest attenuation of intestinal Th2 cytokines.Mice were fed with OVA and curcumin as depicted in Fig 1B. (A-H) Expression of jejunal mRNA for various cytokines is shown.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493063&req=5

pone.0132467.g005: Curcumin exposure during sensitization only results in modest attenuation of intestinal Th2 cytokines.Mice were fed with OVA and curcumin as depicted in Fig 1B. (A-H) Expression of jejunal mRNA for various cytokines is shown.

Mentions: We therefore assessed whether ingestion of curcumin during OVA sensitization alone was sufficient to inhibit the development of intestinal anaphylaxis. BALB/c mice were sensitized and challenged with OVA, and some mice (Group 2) were gavaged with curcumin only prior to and during OVA i.p. immunization as depicted in Fig 1B. Ingestion of curcumin during sensitization alone did not attenuate the production of OVA-specific IgE antibodies in allergic mice (Fig 4A). However, while curcumin-untreated, OVA-challenged mice exhibited severe diarrhea in response to OVA challenge, the presence of diarrhea was not observed in the curcumin-treated, OVA-challenged group (Fig 4B). Similarly, while the examination of CAE-stained jejunal sections revealed that intestinal mast cell numbers tended to be lower in curcumin-treated mice, except for 1 mouse (Fig 4C), the levels of mMCP-1 were comparable in both untreated and curcumin-treated mice, suggesting equivalent mast cell activation in both groups (Fig 4D). Lastly, no significant differences in intestinal Th2 cytokine expression were observed between both groups (Fig 5A–5H). These data, therefore, suggest that while curcumin ingestion during OVA-sensitization can attenuate allergic diarrhea and has some protective effects, its effects on antibody production, mast cell activation and Th2 responses is limited, and not sufficient to deliver the full range of pharmacologic benefits as when given during the entire immunization regimen, including both the priming and acute phases of the model.


Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy.

Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB - PLoS ONE (2015)

Curcumin exposure during sensitization only results in modest attenuation of intestinal Th2 cytokines.Mice were fed with OVA and curcumin as depicted in Fig 1B. (A-H) Expression of jejunal mRNA for various cytokines is shown.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493063&req=5

pone.0132467.g005: Curcumin exposure during sensitization only results in modest attenuation of intestinal Th2 cytokines.Mice were fed with OVA and curcumin as depicted in Fig 1B. (A-H) Expression of jejunal mRNA for various cytokines is shown.
Mentions: We therefore assessed whether ingestion of curcumin during OVA sensitization alone was sufficient to inhibit the development of intestinal anaphylaxis. BALB/c mice were sensitized and challenged with OVA, and some mice (Group 2) were gavaged with curcumin only prior to and during OVA i.p. immunization as depicted in Fig 1B. Ingestion of curcumin during sensitization alone did not attenuate the production of OVA-specific IgE antibodies in allergic mice (Fig 4A). However, while curcumin-untreated, OVA-challenged mice exhibited severe diarrhea in response to OVA challenge, the presence of diarrhea was not observed in the curcumin-treated, OVA-challenged group (Fig 4B). Similarly, while the examination of CAE-stained jejunal sections revealed that intestinal mast cell numbers tended to be lower in curcumin-treated mice, except for 1 mouse (Fig 4C), the levels of mMCP-1 were comparable in both untreated and curcumin-treated mice, suggesting equivalent mast cell activation in both groups (Fig 4D). Lastly, no significant differences in intestinal Th2 cytokine expression were observed between both groups (Fig 5A–5H). These data, therefore, suggest that while curcumin ingestion during OVA-sensitization can attenuate allergic diarrhea and has some protective effects, its effects on antibody production, mast cell activation and Th2 responses is limited, and not sufficient to deliver the full range of pharmacologic benefits as when given during the entire immunization regimen, including both the priming and acute phases of the model.

Bottom Line: In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation.Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs.In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America.

ABSTRACT
IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA)-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g.) exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs), and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

No MeSH data available.


Related in: MedlinePlus