Limits...
Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy.

Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB - PLoS ONE (2015)

Bottom Line: In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation.Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs.In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America.

ABSTRACT
IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA)-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g.) exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs), and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

No MeSH data available.


Related in: MedlinePlus

Curcumin ingestion inhibits the development of intestinal anaphylaxis and mastocytosis in BALB/c mice.Mice were sensitized and challenged with OVA and some mice were gavaged with curcumin as depicted in Fig 1A. (A) Serum OVA-IgE levels (1:50 dilution of serum was used for the assay); (B) Percent of mice with diarrhea; (C) numbers of CAE+ jejunal mast cells; (D) and serum mMCP-1 levels are shown. Data are representative of 3 independent experiments. ** = p<0.01
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493063&req=5

pone.0132467.g002: Curcumin ingestion inhibits the development of intestinal anaphylaxis and mastocytosis in BALB/c mice.Mice were sensitized and challenged with OVA and some mice were gavaged with curcumin as depicted in Fig 1A. (A) Serum OVA-IgE levels (1:50 dilution of serum was used for the assay); (B) Percent of mice with diarrhea; (C) numbers of CAE+ jejunal mast cells; (D) and serum mMCP-1 levels are shown. Data are representative of 3 independent experiments. ** = p<0.01

Mentions: Based on studies that curcumin inhibits T cell and mast cell functions, we hypothesized that oral ingestion of curcumin during allergic sensitization and challenge would inhibit the development of intestinal anaphylaxis to food antigens. In order to examine whether curcumin inhibits intestinal anaphylaxis, mice were fed with 300 μg curcumin in 1% CMC daily, beginning one week prior to the first OVA-alum i.p. challenge, and continued every other day throughout the experimental protocol as depicted in Group 1 (Fig 1A). OVA-challenged BALB/c mice produced elevated levels of OVA-specific IgE compared with saline-treated controls. In contrast, the production of OVA-IgE in OVA-challenged, curcumin-treated mice was significantly diminished (Fig 2A). Similarly, while OVA-sensitized and challenged BALB/c mice exhibited severe profuse diarrhea compared with untreated controls (Fig 2B), none of the OVA-exposed, curcumin-fed BALB/c mice exhibited diarrhea compared with the OVA-challenged, curcumin-untreated group. Likewise, during sacrifice, the production of intestinal edema was also noted in several of the OVA-sensitized and challenged mice, but not in any mice from the curcumin-treated group (data not shown). These data, therefore, suggest that curcumin inhibits the development of IgE production and subsequent intestinal anaphylaxis to oral allergens in this model.


Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy.

Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB - PLoS ONE (2015)

Curcumin ingestion inhibits the development of intestinal anaphylaxis and mastocytosis in BALB/c mice.Mice were sensitized and challenged with OVA and some mice were gavaged with curcumin as depicted in Fig 1A. (A) Serum OVA-IgE levels (1:50 dilution of serum was used for the assay); (B) Percent of mice with diarrhea; (C) numbers of CAE+ jejunal mast cells; (D) and serum mMCP-1 levels are shown. Data are representative of 3 independent experiments. ** = p<0.01
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493063&req=5

pone.0132467.g002: Curcumin ingestion inhibits the development of intestinal anaphylaxis and mastocytosis in BALB/c mice.Mice were sensitized and challenged with OVA and some mice were gavaged with curcumin as depicted in Fig 1A. (A) Serum OVA-IgE levels (1:50 dilution of serum was used for the assay); (B) Percent of mice with diarrhea; (C) numbers of CAE+ jejunal mast cells; (D) and serum mMCP-1 levels are shown. Data are representative of 3 independent experiments. ** = p<0.01
Mentions: Based on studies that curcumin inhibits T cell and mast cell functions, we hypothesized that oral ingestion of curcumin during allergic sensitization and challenge would inhibit the development of intestinal anaphylaxis to food antigens. In order to examine whether curcumin inhibits intestinal anaphylaxis, mice were fed with 300 μg curcumin in 1% CMC daily, beginning one week prior to the first OVA-alum i.p. challenge, and continued every other day throughout the experimental protocol as depicted in Group 1 (Fig 1A). OVA-challenged BALB/c mice produced elevated levels of OVA-specific IgE compared with saline-treated controls. In contrast, the production of OVA-IgE in OVA-challenged, curcumin-treated mice was significantly diminished (Fig 2A). Similarly, while OVA-sensitized and challenged BALB/c mice exhibited severe profuse diarrhea compared with untreated controls (Fig 2B), none of the OVA-exposed, curcumin-fed BALB/c mice exhibited diarrhea compared with the OVA-challenged, curcumin-untreated group. Likewise, during sacrifice, the production of intestinal edema was also noted in several of the OVA-sensitized and challenged mice, but not in any mice from the curcumin-treated group (data not shown). These data, therefore, suggest that curcumin inhibits the development of IgE production and subsequent intestinal anaphylaxis to oral allergens in this model.

Bottom Line: In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation.Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs.In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America.

ABSTRACT
IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA)-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g.) exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs), and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.

No MeSH data available.


Related in: MedlinePlus