Limits...
Foot Morphological Difference between Habitually Shod and Unshod Runners.

Shu Y, Mei Q, Fernandez J, Li Z, Feng N, Gu Y - PLoS ONE (2015)

Bottom Line: In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4 years, 66±7.1 kg & 1.68±0.13 m and 78 females whose age, weight & height were 22±1.8 years, 55±4.7 kg & 1.6±0.11 m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6 years, 66±8.2 kg & 1.72±0.18 m and 66 females whose age, weight & height were 23±1.5 years, 54±5.6 kg & 1.62±0.15 m) (Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging.Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences.This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Sports Science, Ningbo University, Ningbo, China.

ABSTRACT
Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4 years, 66±7.1 kg & 1.68±0.13 m and 78 females whose age, weight & height were 22±1.8 years, 55±4.7 kg & 1.6±0.11 m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6 years, 66±8.2 kg & 1.72±0.18 m and 66 females whose age, weight & height were 23±1.5 years, 54±5.6 kg & 1.62±0.15 m) (Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.

No MeSH data available.


Related in: MedlinePlus

2D foot print image of habitually shod (left) and unshod (right) runners.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4493034&req=5

pone.0131385.g001: 2D foot print image of habitually shod (left) and unshod (right) runners.

Mentions: The Easy-Foot-Scan (EFS), OrthoBaltic (Kaunas, Lithuania) was utilized to process and acquire the 3D foot surface data and 2D foot print image simultaneously. The scan speed, scan sensitivity, resolution, smoothing and hole filling of EFS in the measuring interface were set at fast, normal, 1.0mm, 30mm and 100mm, respectively. To accurately obtain the 3D data and 2D image, the procedure strictly followed the international standard, ISO (International Standards Organization)-20685 and 7250 [49]. As noted by Telfer and Woodburn [49], these standards have ‘been produced with the aim of ensuring that measurements taken using 3D scanning systems are comparable with those taken using traditional methods and can be used in anthropometric databases.’ These standards ‘require that the maximum mean difference between the traditional and 3D scanning derived values is 2 mm.’ The EFS system in this scanning test is equipped with a high precision of 0.3 mm. For the calculation of hallux angle, three landmarks were previously hand-drawn to the medial calcaneous (A & A’), the head of the first metatarsophalangeal joint (B & B’) and the hallux (C & C’) for each participant (S2 Fig). Two lines (line A-B & A’-B’ & line B-C & B’-C’) were used to calculate the hallux angle (HA and HA’) in Auto CAD (Computer Aided Design, 2007) and the minimal distance (D and D’) between the hallux and interphalangeal joint of the second toe computed from the 2D foot print image (Figs 1 and 2).


Foot Morphological Difference between Habitually Shod and Unshod Runners.

Shu Y, Mei Q, Fernandez J, Li Z, Feng N, Gu Y - PLoS ONE (2015)

2D foot print image of habitually shod (left) and unshod (right) runners.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4493034&req=5

pone.0131385.g001: 2D foot print image of habitually shod (left) and unshod (right) runners.
Mentions: The Easy-Foot-Scan (EFS), OrthoBaltic (Kaunas, Lithuania) was utilized to process and acquire the 3D foot surface data and 2D foot print image simultaneously. The scan speed, scan sensitivity, resolution, smoothing and hole filling of EFS in the measuring interface were set at fast, normal, 1.0mm, 30mm and 100mm, respectively. To accurately obtain the 3D data and 2D image, the procedure strictly followed the international standard, ISO (International Standards Organization)-20685 and 7250 [49]. As noted by Telfer and Woodburn [49], these standards have ‘been produced with the aim of ensuring that measurements taken using 3D scanning systems are comparable with those taken using traditional methods and can be used in anthropometric databases.’ These standards ‘require that the maximum mean difference between the traditional and 3D scanning derived values is 2 mm.’ The EFS system in this scanning test is equipped with a high precision of 0.3 mm. For the calculation of hallux angle, three landmarks were previously hand-drawn to the medial calcaneous (A & A’), the head of the first metatarsophalangeal joint (B & B’) and the hallux (C & C’) for each participant (S2 Fig). Two lines (line A-B & A’-B’ & line B-C & B’-C’) were used to calculate the hallux angle (HA and HA’) in Auto CAD (Computer Aided Design, 2007) and the minimal distance (D and D’) between the hallux and interphalangeal joint of the second toe computed from the 2D foot print image (Figs 1 and 2).

Bottom Line: In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4 years, 66±7.1 kg & 1.68±0.13 m and 78 females whose age, weight & height were 22±1.8 years, 55±4.7 kg & 1.6±0.11 m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6 years, 66±8.2 kg & 1.72±0.18 m and 66 females whose age, weight & height were 23±1.5 years, 54±5.6 kg & 1.62±0.15 m) (Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging.Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences.This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Sports Science, Ningbo University, Ningbo, China.

ABSTRACT
Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4 years, 66±7.1 kg & 1.68±0.13 m and 78 females whose age, weight & height were 22±1.8 years, 55±4.7 kg & 1.6±0.11 m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6 years, 66±8.2 kg & 1.72±0.18 m and 66 females whose age, weight & height were 23±1.5 years, 54±5.6 kg & 1.62±0.15 m) (Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.

No MeSH data available.


Related in: MedlinePlus