Limits...
The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

Goldberg BE, Mongodin EF, Jones CE, Chung M, Fraser CM, Tate A, Zeichner SL - PLoS ONE (2015)

Bottom Line: Multiple specimens from different sampling sites in the mouth were collected for each patient.We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations.The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed.

View Article: PubMed Central - PubMed

Affiliation: Division of Pediatric Infectious Diseases, Children's National Medical Center, Washington, DC, United States of America.

ABSTRACT
The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better characterize the oral microbiome in children and those with poorly-controlled HIV infections.

No MeSH data available.


Related in: MedlinePlus

Most abundant OTUs.Relative OTU abundance was summed for primary versus permanent teeth and plaque score. Multiple OTUs may be generated for the same genera, due to the clustering method employed by QIIME. Unique genera consist of OTUs with identical genera assignments, which were summed for each patient group to provide a total abundance for each unique genus. The abundance data was normalized and ranked to identify the ten most abundant genera for each group. Genera identified in only primary or permanent teeth were present in both patient groups, but at lower relative abundance.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492946&req=5

pone.0131615.g003: Most abundant OTUs.Relative OTU abundance was summed for primary versus permanent teeth and plaque score. Multiple OTUs may be generated for the same genera, due to the clustering method employed by QIIME. Unique genera consist of OTUs with identical genera assignments, which were summed for each patient group to provide a total abundance for each unique genus. The abundance data was normalized and ranked to identify the ten most abundant genera for each group. Genera identified in only primary or permanent teeth were present in both patient groups, but at lower relative abundance.

Mentions: Although statistically significant differences were not appreciated, a comparison of relative abundances between unique genera in primary and permanent dentition revealed increased abundance of Rothia and Actinobacillus in primary teeth, while Actinomyces and Actinobaculum were more abundant in permanent teeth (Fig 3A). The clustering algorithm used by QIIME results in the generation of multiple OTUs with identical taxonomic assignments. When ranking the genera present in samples, all samples with an identical taxonomic assignment were combined. Unique genera refer to non-duplicated taxonomic assignments, for which the relative OTU abundance was summed and then ranked to produce Fig 3.


The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

Goldberg BE, Mongodin EF, Jones CE, Chung M, Fraser CM, Tate A, Zeichner SL - PLoS ONE (2015)

Most abundant OTUs.Relative OTU abundance was summed for primary versus permanent teeth and plaque score. Multiple OTUs may be generated for the same genera, due to the clustering method employed by QIIME. Unique genera consist of OTUs with identical genera assignments, which were summed for each patient group to provide a total abundance for each unique genus. The abundance data was normalized and ranked to identify the ten most abundant genera for each group. Genera identified in only primary or permanent teeth were present in both patient groups, but at lower relative abundance.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492946&req=5

pone.0131615.g003: Most abundant OTUs.Relative OTU abundance was summed for primary versus permanent teeth and plaque score. Multiple OTUs may be generated for the same genera, due to the clustering method employed by QIIME. Unique genera consist of OTUs with identical genera assignments, which were summed for each patient group to provide a total abundance for each unique genus. The abundance data was normalized and ranked to identify the ten most abundant genera for each group. Genera identified in only primary or permanent teeth were present in both patient groups, but at lower relative abundance.
Mentions: Although statistically significant differences were not appreciated, a comparison of relative abundances between unique genera in primary and permanent dentition revealed increased abundance of Rothia and Actinobacillus in primary teeth, while Actinomyces and Actinobaculum were more abundant in permanent teeth (Fig 3A). The clustering algorithm used by QIIME results in the generation of multiple OTUs with identical taxonomic assignments. When ranking the genera present in samples, all samples with an identical taxonomic assignment were combined. Unique genera refer to non-duplicated taxonomic assignments, for which the relative OTU abundance was summed and then ranked to produce Fig 3.

Bottom Line: Multiple specimens from different sampling sites in the mouth were collected for each patient.We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations.The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed.

View Article: PubMed Central - PubMed

Affiliation: Division of Pediatric Infectious Diseases, Children's National Medical Center, Washington, DC, United States of America.

ABSTRACT
The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better characterize the oral microbiome in children and those with poorly-controlled HIV infections.

No MeSH data available.


Related in: MedlinePlus