Limits...
The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

Goldberg BE, Mongodin EF, Jones CE, Chung M, Fraser CM, Tate A, Zeichner SL - PLoS ONE (2015)

Bottom Line: Multiple specimens from different sampling sites in the mouth were collected for each patient.We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations.The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed.

View Article: PubMed Central - PubMed

Affiliation: Division of Pediatric Infectious Diseases, Children's National Medical Center, Washington, DC, United States of America.

ABSTRACT
The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better characterize the oral microbiome in children and those with poorly-controlled HIV infections.

No MeSH data available.


Related in: MedlinePlus

Shannon Diversity Scores.Boxplots were generated from Shannon diversity scores with quartiles represented in whisker plots and the mean identified by the central point. The Shannon score, which is a measure of species diversity within a sample, is compared between sample locations in Panel A. All Shannon scores for each location, patient or HIV-status are contained in the individual boxplots. Panel B demonstrates that minimal differences were observed between the HIV positive and HIV negative patients. The range of Shannon scores between patients is shown in Panel C. Most patients had scores greater than 5.6. The sole exception was patient 12, who was the only patient under age five. All tooth samples from patient 12 were from primary teeth, and her average shannon score was decreased relative to the other patients with a value of 5.0. All tooth samples are supragingival.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492946&req=5

pone.0131615.g001: Shannon Diversity Scores.Boxplots were generated from Shannon diversity scores with quartiles represented in whisker plots and the mean identified by the central point. The Shannon score, which is a measure of species diversity within a sample, is compared between sample locations in Panel A. All Shannon scores for each location, patient or HIV-status are contained in the individual boxplots. Panel B demonstrates that minimal differences were observed between the HIV positive and HIV negative patients. The range of Shannon scores between patients is shown in Panel C. Most patients had scores greater than 5.6. The sole exception was patient 12, who was the only patient under age five. All tooth samples from patient 12 were from primary teeth, and her average shannon score was decreased relative to the other patients with a value of 5.0. All tooth samples are supragingival.

Mentions: Diversity (Shannon and Simpson) and richness (Chao1) indices were calculated for each sample; median values and standard deviations are provided by sample location and HIV status in Table 4. Both Simpson and Shannon diversity indices provide insights into species composition and relative abundance of bacterial communities. However, with the Shannon index, the "weight" of abundant species is reduced slightly relative to more rare species, whereas using the Simpson index the weight of rare species is reduced relatively more than that of more abundant species [34]. The Chao1 estimator scores the community richness, e.g. the total number of species present in a sample. Table 4 demonstrates that the mean diversity metrics and observed number of OTUs fell within a narrow range across the different sampling sites and patient populations. The total number of observed OTUs ranged from 792 to 851, mean Chao1 scores ranged from 476.66 to 560.24 mean Shannon scores ranged from 5.66 to 6.25 and mean Simpson scores ranged from 0.92 to 0.97. Mean Shannon values for each individual patient ranged between 5.04 and 6.46 (Fig 1C).


The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

Goldberg BE, Mongodin EF, Jones CE, Chung M, Fraser CM, Tate A, Zeichner SL - PLoS ONE (2015)

Shannon Diversity Scores.Boxplots were generated from Shannon diversity scores with quartiles represented in whisker plots and the mean identified by the central point. The Shannon score, which is a measure of species diversity within a sample, is compared between sample locations in Panel A. All Shannon scores for each location, patient or HIV-status are contained in the individual boxplots. Panel B demonstrates that minimal differences were observed between the HIV positive and HIV negative patients. The range of Shannon scores between patients is shown in Panel C. Most patients had scores greater than 5.6. The sole exception was patient 12, who was the only patient under age five. All tooth samples from patient 12 were from primary teeth, and her average shannon score was decreased relative to the other patients with a value of 5.0. All tooth samples are supragingival.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492946&req=5

pone.0131615.g001: Shannon Diversity Scores.Boxplots were generated from Shannon diversity scores with quartiles represented in whisker plots and the mean identified by the central point. The Shannon score, which is a measure of species diversity within a sample, is compared between sample locations in Panel A. All Shannon scores for each location, patient or HIV-status are contained in the individual boxplots. Panel B demonstrates that minimal differences were observed between the HIV positive and HIV negative patients. The range of Shannon scores between patients is shown in Panel C. Most patients had scores greater than 5.6. The sole exception was patient 12, who was the only patient under age five. All tooth samples from patient 12 were from primary teeth, and her average shannon score was decreased relative to the other patients with a value of 5.0. All tooth samples are supragingival.
Mentions: Diversity (Shannon and Simpson) and richness (Chao1) indices were calculated for each sample; median values and standard deviations are provided by sample location and HIV status in Table 4. Both Simpson and Shannon diversity indices provide insights into species composition and relative abundance of bacterial communities. However, with the Shannon index, the "weight" of abundant species is reduced slightly relative to more rare species, whereas using the Simpson index the weight of rare species is reduced relatively more than that of more abundant species [34]. The Chao1 estimator scores the community richness, e.g. the total number of species present in a sample. Table 4 demonstrates that the mean diversity metrics and observed number of OTUs fell within a narrow range across the different sampling sites and patient populations. The total number of observed OTUs ranged from 792 to 851, mean Chao1 scores ranged from 476.66 to 560.24 mean Shannon scores ranged from 5.66 to 6.25 and mean Simpson scores ranged from 0.92 to 0.97. Mean Shannon values for each individual patient ranged between 5.04 and 6.46 (Fig 1C).

Bottom Line: Multiple specimens from different sampling sites in the mouth were collected for each patient.We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations.The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed.

View Article: PubMed Central - PubMed

Affiliation: Division of Pediatric Infectious Diseases, Children's National Medical Center, Washington, DC, United States of America.

ABSTRACT
The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better characterize the oral microbiome in children and those with poorly-controlled HIV infections.

No MeSH data available.


Related in: MedlinePlus