Limits...
Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.

Clément G, Allaway HC, Demel M, Golemis A, Kindrat AN, Melinyshyn AN, Merali T, Thirsk R - PLoS ONE (2015)

Bottom Line: The reaction time decreased throughout the sessions, thus indicating a learning effect.However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight.These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight.

View Article: PubMed Central - PubMed

Affiliation: Lyon Neuroscience Research Center, Bron, France.

ABSTRACT
The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.

No MeSH data available.


Related in: MedlinePlus

Time to first reversal.Time to first reversal for the four reversible perspective figures and the two reversible silhouettes for 6 astronauts (white box-and-whisker plots, mean and median) and 14 control subjects (grey box-and-whisker plots).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492703&req=5

pone.0132317.g005: Time to first reversal.Time to first reversal for the four reversible perspective figures and the two reversible silhouettes for 6 astronauts (white box-and-whisker plots, mean and median) and 14 control subjects (grey box-and-whisker plots).

Mentions: On the ground, the time to first reversal was not significantly different between the control subjects and the astronauts for both the silhouettes ([F (1,119) = 0.02, p = 0.33] and the perspective figures [F (1,239) = 0.73, p = 0.39]. However, the time to first reversal was longer for the perspective figures than for the silhouettes for both the control subjects [F (1,251) = 69.4, p < 0.001] and the astronauts [F (1,107) = 29.9, p < 0.001]. The time to first reversal averaged across all 20 subjects was 11.7 s (SD 9.1 s) for the perspectives figures and 5.1 s (SD 3.1 s) for the silhouettes. For both perspective figures and silhouettes, no significant difference was found across pre-flight sessions and figures for both the astronauts and the control subjects (Fig 5).


Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.

Clément G, Allaway HC, Demel M, Golemis A, Kindrat AN, Melinyshyn AN, Merali T, Thirsk R - PLoS ONE (2015)

Time to first reversal.Time to first reversal for the four reversible perspective figures and the two reversible silhouettes for 6 astronauts (white box-and-whisker plots, mean and median) and 14 control subjects (grey box-and-whisker plots).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492703&req=5

pone.0132317.g005: Time to first reversal.Time to first reversal for the four reversible perspective figures and the two reversible silhouettes for 6 astronauts (white box-and-whisker plots, mean and median) and 14 control subjects (grey box-and-whisker plots).
Mentions: On the ground, the time to first reversal was not significantly different between the control subjects and the astronauts for both the silhouettes ([F (1,119) = 0.02, p = 0.33] and the perspective figures [F (1,239) = 0.73, p = 0.39]. However, the time to first reversal was longer for the perspective figures than for the silhouettes for both the control subjects [F (1,251) = 69.4, p < 0.001] and the astronauts [F (1,107) = 29.9, p < 0.001]. The time to first reversal averaged across all 20 subjects was 11.7 s (SD 9.1 s) for the perspectives figures and 5.1 s (SD 3.1 s) for the silhouettes. For both perspective figures and silhouettes, no significant difference was found across pre-flight sessions and figures for both the astronauts and the control subjects (Fig 5).

Bottom Line: The reaction time decreased throughout the sessions, thus indicating a learning effect.However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight.These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight.

View Article: PubMed Central - PubMed

Affiliation: Lyon Neuroscience Research Center, Bron, France.

ABSTRACT
The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.

No MeSH data available.


Related in: MedlinePlus