Limits...
Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes.

Rochester JR, Bolden AL - Environ. Health Perspect. (2015)

Bottom Line: Further, we compared the hormonal potency of BPS and BPF to that of BPA.The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo.Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects.

View Article: PubMed Central - PubMed

Affiliation: The Endocrine Disruption Exchange (TEDX), Paonia, Colorado, USA.

ABSTRACT

Background: Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled "BPA-free." Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes.

Objectives: This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA.

Methods: We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol.

Results: We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression.

Conclusions: Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects.

Citation: Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes.

No MeSH data available.


Related in: MedlinePlus

Chemical structures of bisphenol A, bisphenol S, and bisphenol F.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492270&req=5

f1: Chemical structures of bisphenol A, bisphenol S, and bisphenol F.

Mentions: Ideally, substitutes used to replace a chemical of concern would be inert, or at least far less toxic than the original chemical(s). Unfortunately, many chemical replacements are untested before being placed on the market, and in some cases are similar enough to the original chemical to cause concern. For that reason, such chemical analogs should be evaluated before they are used as replacements for toxic chemicals. These chemicals may be just as harmful as the originals—or more so—and have been described as “regrettable substitutions,” as is the case with several perfluorinated chemicals (Howard 2014), pesticides (Coggon 2002), and flame retardants (Bergman et al. 2012). In the case of BPS and BPF, these chemicals are structural analogs to BPA (Figure 1); thus their effects in physiological systems may be similar. BPA is a known endocrine disruptor based on in vitro (Wetherill et al. 2007) and animal laboratory studies (Richter et al. 2007a; Vandenberg 2014b), and exposures to environmental levels of BPA have been associated with adverse health outcomes in children and adults in more than 75 human studies (Rochester 2013). To evaluate the endocrine-disrupting properties of the BPA substitutes BPS and BPF, we conducted a systematic review of the literature using the National Institute of Environmental Health Sciences’ Office of Health Assessment and Translation (OHAT) systematic review protocol (National Toxicology Program 2013; Rooney et al. 2014). In this analysis we summarize in vivo and in vitro literature and compare the hormonal potency of BPS and BPF to BPA using the in vitro studies.


Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes.

Rochester JR, Bolden AL - Environ. Health Perspect. (2015)

Chemical structures of bisphenol A, bisphenol S, and bisphenol F.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492270&req=5

f1: Chemical structures of bisphenol A, bisphenol S, and bisphenol F.
Mentions: Ideally, substitutes used to replace a chemical of concern would be inert, or at least far less toxic than the original chemical(s). Unfortunately, many chemical replacements are untested before being placed on the market, and in some cases are similar enough to the original chemical to cause concern. For that reason, such chemical analogs should be evaluated before they are used as replacements for toxic chemicals. These chemicals may be just as harmful as the originals—or more so—and have been described as “regrettable substitutions,” as is the case with several perfluorinated chemicals (Howard 2014), pesticides (Coggon 2002), and flame retardants (Bergman et al. 2012). In the case of BPS and BPF, these chemicals are structural analogs to BPA (Figure 1); thus their effects in physiological systems may be similar. BPA is a known endocrine disruptor based on in vitro (Wetherill et al. 2007) and animal laboratory studies (Richter et al. 2007a; Vandenberg 2014b), and exposures to environmental levels of BPA have been associated with adverse health outcomes in children and adults in more than 75 human studies (Rochester 2013). To evaluate the endocrine-disrupting properties of the BPA substitutes BPS and BPF, we conducted a systematic review of the literature using the National Institute of Environmental Health Sciences’ Office of Health Assessment and Translation (OHAT) systematic review protocol (National Toxicology Program 2013; Rooney et al. 2014). In this analysis we summarize in vivo and in vitro literature and compare the hormonal potency of BPS and BPF to BPA using the in vitro studies.

Bottom Line: Further, we compared the hormonal potency of BPS and BPF to that of BPA.The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo.Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects.

View Article: PubMed Central - PubMed

Affiliation: The Endocrine Disruption Exchange (TEDX), Paonia, Colorado, USA.

ABSTRACT

Background: Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled "BPA-free." Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes.

Objectives: This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA.

Methods: We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol.

Results: We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression.

Conclusions: Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects.

Citation: Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes.

No MeSH data available.


Related in: MedlinePlus