Limits...
Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS).

Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, Breugelmans O, Kruize H, Janssen NA, Houthuijs D - Environ. Health Perspect. (2015)

Bottom Line: We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively).Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01).

View Article: PubMed Central - PubMed

Affiliation: National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

ABSTRACT

Background: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations.

Objectives: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases.

Methods: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004-2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.

Results: After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10.

Conclusions: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.

No MeSH data available.


Related in: MedlinePlus

Adjusted hazard ratios (95% CIs) per 10-μg/m3 increase in PM10 (A) and NO2 (B), by population characteristics and cause of death. Model was adjusted for age, sex, marital status, region of origin, socioeconomic status, and household income, stratified as indicated on x-axis. Socioeconomic status categories are based on the quintiles of the social status rankings; urbanization is based on address density: (low: < 500 addresses/km2; moderate low: 500–1,000 addresses/km2; medium: 1,000–1,500 addresses/km2; moderate high: 1,500–2,500 addresses/km2; high: > 2,500 addresses/km2).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492265&req=5

f3: Adjusted hazard ratios (95% CIs) per 10-μg/m3 increase in PM10 (A) and NO2 (B), by population characteristics and cause of death. Model was adjusted for age, sex, marital status, region of origin, socioeconomic status, and household income, stratified as indicated on x-axis. Socioeconomic status categories are based on the quintiles of the social status rankings; urbanization is based on address density: (low: < 500 addresses/km2; moderate low: 500–1,000 addresses/km2; medium: 1,000–1,500 addresses/km2; moderate high: 1,500–2,500 addresses/km2; high: > 2,500 addresses/km2).

Mentions: In Figure 3 we present the HRs for nonaccidental, circulatory, respiratory, and lung cancer mortality per 10 μg/m3 PM10 and NO2 by sex, age, social economic status and degree of urbanization. We did not find consistent patterns of effect modification across the different outcomes, although, except for circulatory mortality, HRs tended to be closer to unity among those > 65 years of age compared with younger residents. For lung cancer, women were at higher risks for both, PM10 and NO2 exposure.


Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS).

Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, Breugelmans O, Kruize H, Janssen NA, Houthuijs D - Environ. Health Perspect. (2015)

Adjusted hazard ratios (95% CIs) per 10-μg/m3 increase in PM10 (A) and NO2 (B), by population characteristics and cause of death. Model was adjusted for age, sex, marital status, region of origin, socioeconomic status, and household income, stratified as indicated on x-axis. Socioeconomic status categories are based on the quintiles of the social status rankings; urbanization is based on address density: (low: < 500 addresses/km2; moderate low: 500–1,000 addresses/km2; medium: 1,000–1,500 addresses/km2; moderate high: 1,500–2,500 addresses/km2; high: > 2,500 addresses/km2).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492265&req=5

f3: Adjusted hazard ratios (95% CIs) per 10-μg/m3 increase in PM10 (A) and NO2 (B), by population characteristics and cause of death. Model was adjusted for age, sex, marital status, region of origin, socioeconomic status, and household income, stratified as indicated on x-axis. Socioeconomic status categories are based on the quintiles of the social status rankings; urbanization is based on address density: (low: < 500 addresses/km2; moderate low: 500–1,000 addresses/km2; medium: 1,000–1,500 addresses/km2; moderate high: 1,500–2,500 addresses/km2; high: > 2,500 addresses/km2).
Mentions: In Figure 3 we present the HRs for nonaccidental, circulatory, respiratory, and lung cancer mortality per 10 μg/m3 PM10 and NO2 by sex, age, social economic status and degree of urbanization. We did not find consistent patterns of effect modification across the different outcomes, although, except for circulatory mortality, HRs tended to be closer to unity among those > 65 years of age compared with younger residents. For lung cancer, women were at higher risks for both, PM10 and NO2 exposure.

Bottom Line: We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively).Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01).

View Article: PubMed Central - PubMed

Affiliation: National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

ABSTRACT

Background: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations.

Objectives: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases.

Methods: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004-2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.

Results: After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10.

Conclusions: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.

No MeSH data available.


Related in: MedlinePlus