Limits...
Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS).

Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, Breugelmans O, Kruize H, Janssen NA, Houthuijs D - Environ. Health Perspect. (2015)

Bottom Line: We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively).Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01).

View Article: PubMed Central - PubMed

Affiliation: National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

ABSTRACT

Background: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations.

Objectives: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases.

Methods: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004-2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.

Results: After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10.

Conclusions: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.

No MeSH data available.


Related in: MedlinePlus

Estimated concentration–response curves (solid blue lines) and 95% CIs (dashed lines) for nonaccidental mortality, circulatory disease mortality, respiratory disease mortality, and lung cancer mortality for (A) NO2 and (B) PM10. ln, natural logarithm. Model was adjusted for age, sex, marital status, region of origin, and household income.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492265&req=5

f2: Estimated concentration–response curves (solid blue lines) and 95% CIs (dashed lines) for nonaccidental mortality, circulatory disease mortality, respiratory disease mortality, and lung cancer mortality for (A) NO2 and (B) PM10. ln, natural logarithm. Model was adjusted for age, sex, marital status, region of origin, and household income.

Mentions: Associations between PM10 and nonaccidental, circulatory disease and lung cancer mortality did not deviate significantly (p < 0.01) from linear (Figure 2). The association with respiratory disease mortality increased up to about 40 μg/m3 and then unexpectedly decreased. Associations between NO2 and mortality deviated significantly from linear only for circulatory disease (Figure 2).


Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS).

Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, Breugelmans O, Kruize H, Janssen NA, Houthuijs D - Environ. Health Perspect. (2015)

Estimated concentration–response curves (solid blue lines) and 95% CIs (dashed lines) for nonaccidental mortality, circulatory disease mortality, respiratory disease mortality, and lung cancer mortality for (A) NO2 and (B) PM10. ln, natural logarithm. Model was adjusted for age, sex, marital status, region of origin, and household income.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492265&req=5

f2: Estimated concentration–response curves (solid blue lines) and 95% CIs (dashed lines) for nonaccidental mortality, circulatory disease mortality, respiratory disease mortality, and lung cancer mortality for (A) NO2 and (B) PM10. ln, natural logarithm. Model was adjusted for age, sex, marital status, region of origin, and household income.
Mentions: Associations between PM10 and nonaccidental, circulatory disease and lung cancer mortality did not deviate significantly (p < 0.01) from linear (Figure 2). The association with respiratory disease mortality increased up to about 40 μg/m3 and then unexpectedly decreased. Associations between NO2 and mortality deviated significantly from linear only for circulatory disease (Figure 2).

Bottom Line: We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively).Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01).

View Article: PubMed Central - PubMed

Affiliation: National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

ABSTRACT

Background: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations.

Objectives: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases.

Methods: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004-2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.

Results: After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10.

Conclusions: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.

No MeSH data available.


Related in: MedlinePlus